Inspect_test_calibrate {HDCD} | R Documentation |
Generates empirical detection threshold \xi
for single change-point testing using Monte Carlo simulation
Description
R wrapper for C function choosing the empirical detection threshold \xi
for Inspect Wang and Samworth (2018) for single change-point testing using Monte Carlo simulation.
Usage
Inspect_test_calibrate(
n,
p,
N = 100,
tol = 1/100,
lambda = NULL,
eps = 1e-10,
maxiter = 10000,
rescale_variance = TRUE,
debug = FALSE
)
Arguments
n |
Number of observations |
p |
Number time series |
N |
Number of Monte Carlo samples used |
tol |
False positive probability tolerance |
lambda |
Manually specified value of |
eps |
Threshold for declaring numerical convergence of the power method |
maxiter |
Maximum number of iterations for the power method |
rescale_variance |
If |
debug |
If |
Value
A list containing
max_value |
the empirical threshold |
References
Wang T, Samworth RJ (2018). “High dimensional change point estimation via sparse projection.” Journal of the Royal Statistical Society: Series B (Statistical Methodology), 80(1), 57–83. ISSN 1467-9868, doi:10.1111/rssb.12243, https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12243.
Examples
library(HDCD)
n = 50
p = 50
set.seed(100)
thresholds_emp = Inspect_test_calibrate(n,p,N=100, tol=1/100)
thresholds_emp
# Generating data
X = matrix(rnorm(n*p), ncol = n, nrow=p)
Y = matrix(rnorm(n*p), ncol = n, nrow=p)
# Adding a single sparse change-point to X (and not Y):
X[1:5, 26:n] = X[1:5, 26:n] +2
resX = Inspect_test(X, xi = thresholds_emp$max_value)
resX
resY = Inspect_test(Y, xi = thresholds_emp$max_value)
resY