DGP {HCmodelSets} | R Documentation |
Data generating process used by Battey, H. S. & Cox, D. R. (2018).
Description
This function generates realizations of random variables as described in the simple example of Battey, H. S. & Cox, D. R. (2018).
Usage
DGP(s,a,sigStrength,rho,n,noise=NULL,var,d,intercept,type.response="N",DGP.seed=NULL,
scale=NULL,shape=NULL,rate=NULL)
Arguments
s |
Number of signal variables. |
a |
Number of noise variables correlated with signal variables. |
sigStrength |
Signal strength. |
rho |
Correlation among signal variables and noise variables correlated with signal variables. |
n |
Sample size. |
noise |
Variance of the observations around the true regression line. |
var |
Variance of the potential explanatory variables. |
d |
Number of potential explanatory variables. |
intercept |
Expected value of the response variable when all potential explanatory variables are at zero. It is only considered when type.response="N". |
type.response |
Generates gaussian ("N") or survival ("S") data from a proportional hazards model with Weibull baseline hazard. |
DGP.seed |
Seed for the random number generator. |
scale |
scale parameter of the proportional hazards model with Weibull baseline hazard. |
shape |
shape parameter of the proportional hazards model with Weibull baseline hazard. |
rate |
rate parameter of the exponential distribution of censoring times. If not provided, uncensored data are generated. |
Value
X |
The simulated design matrix. |
Y |
The simulated response variable. |
TRUE.idx |
Indices of the variables in the true model. |
status |
If type.response="S", provides the status from survival data. |
Acknowledgement
The work was supported by the UK Engineering and Physical Sciences Research Council under grant number EP/P002757/1.
Author(s)
Hoeltgebaum, H. H.
References
Cox, D. R. and Battey, H. S. (2017). Large numbers of explanatory variables, a semi-descriptive analysis. Proceedings of the National Academy of Sciences, 114(32), 8592-8595.
Battey, H. S. and Cox, D. R. (2018). Large numbers of explanatory variables: a probabilistic assessment. Proceedings of the Royal Society of London, A., 474(2215), 20170631.
Hoeltgebaum, H., & Battey, H. S. (2019). HCmodelSets: An R Package for Specifying Sets of Well-fitting Models in High Dimensions. The R Journal, 11(2), 370-379.
Examples
## Generates DGP
## Generates a random DGP
dgp = DGP(s=5, a=3, sigStrength=1, rho=0.9, n=100, intercept=5, noise=1,
var=1, d=1000, DGP.seed = 2018)