hac {HAC} | R Documentation |
Construction of hac objects
Description
hac objects are required as input argument for several functions, e.g. plot.hac
and rHAC
. They can be constructed by hac
and hac.full
. The latter function produces only fully nested Archimedean copulae, whereas hac
can construct arbitrary dependence structures for a given family. Moreover, the functions hac2nacopula
and nacopula2hac
ensure the compatability with the copula package.
Usage
hac(type, tree)
hac.full(type, y, theta)
## S3 method for class 'hac'
print(x, digits = 2, ...)
hac2nacopula(x)
nacopula2hac(outer_nacopula)
Arguments
y |
a vector containing the variables, which are denoted by a |
theta |
a vector containing the HAC parameters, which should be ordered from top to down. The length of |
tree |
a |
type |
all copula-types are admissible, see |
x |
a hac object. |
outer_nacopula |
an |
digits |
specifies the digits, see |
... |
arguments to be passed to |
Value
A hac object is returned.
type |
the specified copula type. |
tree |
the structure of the HAC. |
References
Hofert, M. and Maechler, M. 2011, Nested Archimedean Copulas Meet R: The nacopula
Package, Journal of Statistical Software, 39(9), 1-20, doi: 10.18637/jss.v039.i09.
Hofert, M., Kojadinovic, I., Maechler, M. and Yan, J. 2015, copula
: Multivariate Dependence with Copulas, R package version 0.999-14, https://CRAN.R-project.org/package=copula.
Kojadinovic, I., Yan, J. 2010, Modeling Multivariate Distributions with Continuous Margins Using the copula
R Package, Journal of Statistical Software, 34(9), 1-20. doi: 10.18637/jss.v034.i09.
Okhrin, O. and Ristig, A. 2014, Hierarchical Archimedean Copulae: The HAC
Package", Journal of Statistical Software, 58(4), 1-20, doi: 10.18637/jss.v058.i04.
Yan, J. 2007, Enjoy the Joy of Copulas: With a Package copula
, Journal of Statistical Software, 21(4), 1-21, doi: 10.18637/jss.v021.i04.
Examples
# it might be helpful to plot the hac objects
# Example 1: 4-dim AC
tree = list("X1", "X2", "X3", "X4", 2)
AC = hac(type = 1, tree = tree)
# Example 2: 4-dim HAC
y = c("X1", "X4", "X3", "X2")
theta = c(2, 3, 4)
HAC1 = hac.full(type = 1, y = y, theta = theta)
HAC2 = hac(type = 1, tree = list(list(list("X2", "X3", 4),
"X4", 3), "X1", 2))
tree2str(HAC1) == tree2str(HAC2) # [1] TRUE
# Example 3: 9-dim HAC
HAC = hac(type = 1, tree = list("X6", "X5", list("X2", "X4", "X3", 4.4),
list("X1", "X7", 3.3), list("X8", "X9", 4), 2.3))
plot(HAC)