dHAC, pHAC, rHAC {HAC} | R Documentation |
pdf, cdf and random sampling
Description
dHAC
and pHAC
compute the values of the copula's density and cumulative distribution function respectively. rHAC
samples from HAC.
Usage
dHAC(X, hac, eval = TRUE, margins = NULL, na.rm = FALSE, ...)
pHAC(X, hac, margins = NULL, na.rm = FALSE, ...)
rHAC(n, hac)
Arguments
X |
a data matrix. The number of columns and the corresponding names have to coincide with the specifications of the copula model |
hac |
an object of the class |
n |
number of observations. |
margins |
specifies the margins. The data matrix |
na.rm |
boolean. If |
eval |
boolean. If |
... |
arguments to be passed to |
Details
Sampling schemes of hierarchical and densities of simple Archimedean copula are based on functions of the copula package.
Value
rHAC
retruns a n \times d
matrix, where d
refers to the dimension of the HAC. dHAC
and pHAC
return vectors. The computation of the density might be time consuming for high-dimensions, since the density is defined as d
-th derivative of the HAC with respect to its arguments u_1, \ldots, u_d
.
References
Hofert, M. 2011, Efficiently Sampling Nested Archimedean Copulas, Computational Statistics & Data Analysis 55, 57-70.
Joe, H. 1997, Multivariate Models and Dependence Concepts, Chapman & Hall.
McNeil, A. J. 2008, Sampling Nested Archimedean Copulas, Journal of Statistical Computation and Simulation 78, 567-581.
Nelsen, R. B. 2006, An Introduction to Copulas, Spinger, 2nd Edition.
Okhrin, O. and Ristig, A. 2014, Hierarchical Archimedean Copulae: The HAC
Package", Journal of Statistical Software, 58(4), 1-20, doi: 10.18637/jss.v058.i04.
Savu, C. and Trede, M. 2010, Hierarchies of Archimedean copulas, Quantitative Finance 10, 295-304.
See Also
Examples
# AC example
# define the underlying model
model = hac(type = 4, tree = list("X1", "X2", 2))
# sample from model
sample = rHAC(100, model)
# returns the pdf/cdf at each vector of the sample
d.values = dHAC(sample, model)
p.values = pHAC(sample, model)
# HAC example
# the underlying model
y = c("X1", "X2", "X3")
theta = c(1.5, 3)
model = hac.full(type = 1, y, theta)
# define sample from copula model
sample = rHAC(100, model)
# returns the pdf/cdf at each point of the sample
d.values = dHAC(sample, model)
p.values = pHAC(sample, model)
# construct a hac-model
tree = list(list("X1", "X5", 3), list("X2", "X3", "X4", 4), 2)
model = hac(type = 1, tree = tree)
# sample from copula model
sample = rHAC(1000, model)
# check the accurancy of the estimation procedure
result1 = estimate.copula(sample)
result2 = estimate.copula(sample, epsilon = 0.2)