Plots {Greymodels} | R Documentation |
plots
Description
The plots function gives an interactive plot of the model.
Usage
plots(x0,x0cap2,ci,model)
plotrm(x0,x0cap2,ci,model)
plotsmv1(actual1,fp1,ci,model)
plotsmv2(actual1,fitted,ci,model)
plotsigndgm(actual,pred,ci,model)
plots_mdbgm12(actual,pred,ci,model)
Arguments
x0 |
Raw data |
x0cap2 |
Fitted and predicted data |
actual |
Raw data of interval sequences |
actual1 |
Raw data of multi-variate sequences |
fp1 |
Fitted and predicted data of first variable |
fitted |
Fitted data of multi-variate sequences |
pred |
Fitted and predicted data of interval sequences |
ci |
The confidence level chosen by the user. Values range between 90%, 95% and 99%. |
model |
The model under considration |
Value
plots
Examples
# Plots - EPGM (1, 1) model
x0cap2<-c(560,541.4,517.8,495.3,473.7,453.1,433.4,414.5,396.5)
x0<-c(560,540,523,500,475)
# length of x0
n <- length(x0)
fitted2 <- t(x0cap2)
x0cap <- x0cap2[1:n]
# Last 4 values of x0cap2
fitted3 <- tail(x0cap2,4)
x0cap5 <- fitted3
w <- length(x0cap2)
t <- length(x0cap5)
# Performance errors
# Root mean square error
s <- rmse(x0, x0cap)
# Sum of square error
sse <- sum((x0 - x0cap)^2)
# Mean square error
mse <- sse / (n - 2)
# Calculate confidence interval
ci <- 95
cc <- (ci + 100)/200
t.val <- qt(cc, n - 2)
u <- numeric(t)
l <- numeric(t)
for (i in 1:t) {
u[i] = x0cap5[i] + (t.val * (sqrt(mse) * sqrt(i)))
l[i] = x0cap5[i] - (t.val * (sqrt(mse) * sqrt(i)))
}
UB <- c(u[1:t])
LB <- c(l[1:t])
LB1 <- c(x0cap[n],LB)
UB2 <- c(x0cap[n],UB)
l1 <- length(LB1)
d3 <- seq(1, l1, 1)
u1 <- length(UB2)
d4 <- seq(1, u1, 1)
set3 <- data.frame(x=d3, y=LB1)
set4 <- data.frame(x=d4, y=UB2)
d0 <- seq(1, n, 1)
xy1 <- data.frame(x=d0, y=x0)
d1 <- seq(1, w, 1)
xy2 <- data.frame(x=d1, y=x0cap2)
# Create data frame
df <- rbind(xy1, xy2, set3, set4)
# Plots
colors <- c("Raw Data"="red","Fitted&Forecasts"="blue","LowerBound"="green","UpperBound"="yellow")
CI <- c(n:w)
x=y=NULL
p <- ggplot(df) +
theme_bw() +
labs(title = 'EPGM (1, 1) model',x = 'Number of observation',y = 'Data Forecast & Prediction') +
scale_x_continuous(breaks=1:w) +
scale_y_continuous(labels = scales::comma) +
geom_point(data = xy1, aes(x = x, y = y), shape = 24, color = "black") +
geom_point(data = xy2, aes(x = x, y = y), shape = 21, color = "black") +
geom_point(data = set3, aes(x = CI, y = y), shape = 23, color = "black") +
geom_point(data = set4, aes(x = CI, y = y), shape = 23, color = "black") +
geom_line(data = xy1, aes(x = x, y = y,color = "Raw Data")) +
geom_line(data = xy2, aes(x = x, y = y,color = "Fitted&Forecasts")) +
geom_line(data = set3, aes(x = CI, y = y,color = "LowerBound"), linetype=2) +
geom_line(data = set4, aes(x = CI, y = y,color = "UpperBound"), linetype=2) +
scale_color_manual(name = "Label",values = colors)
r <- ggplotly(p)
r
[Package Greymodels version 2.0.1 Index]