GrabSVG {GrabSVG} | R Documentation |
A Granularity-Based Approach to identify Spatially Variable Genes
Description
This function is designed to identify spatially variable genes through a granularity-based approach.
Usage
GrabSVG(Coords, ExpMat_Sp, D_1 = 1.0, D_2 = 3.0,
Exp_Norm = TRUE, Coords_Norm_Method = c("Sliced", "Overall", "None"))
Arguments
Coords |
A M x D matrix representing D-dimensional coordinates for M spots |
ExpMat_Sp |
A sparse, N x M expression matrix in dgCMatrix class with N genes and M spots |
D_1 |
Size of the small patch |
D_2 |
Size of the big patch |
Exp_Norm |
A Boolean value indicating whether the expression matrix should be normalized |
Coords_Norm_Method |
Normalization method for the coordinates matrix, which can be "None", "Sliced", or "Overall". |
Details
This function utilizes a MxD matrix (Coords) representing D-dimensional coordinates with M spots and a sparse, NxM expression matrix (ExpMat_Sp) with N genes and M spots.
Value
A data frame with the name of genes and corresponding p-values.
Examples
Coords <- expand.grid(1:100,1:100, 1:3)
RandFunc <- function(n) floor(10 * stats::rbeta(n, 1, 5))
Raw_Exp <- Matrix::rsparsematrix(nrow = 10^4, ncol = 3*10^4, density = 0.0001, rand.x = RandFunc)
Filtered_ExpMat <- SpFilter(Raw_Exp)
rownames(Filtered_ExpMat) <- paste0("Gene_", 1:nrow(Filtered_ExpMat))
P_values <- GrabSVG(Coords, Filtered_ExpMat)
[Package GrabSVG version 0.0.2 Index]