vecchia_grouped_profbeta_loglik_grad_info {GpGp} | R Documentation |
Grouped Vecchia loglikelihood, gradient, Fisher information
Description
This function returns a grouped version (Guinness, 2018) of Vecchia's (1988) approximation to the Gaussian loglikelihood, the gradient, and Fisher information, and the profile likelihood estimate of the regression coefficients. The approximation modifies the ordered conditional specification of the joint density; rather than each term in the product conditioning on all previous observations, each term conditions on a small subset of previous observations.
Usage
vecchia_grouped_profbeta_loglik_grad_info(
covparms,
covfun_name,
y,
X,
locs,
NNlist
)
Arguments
covparms |
A vector of covariance parameters appropriate for the specified covariance function |
covfun_name |
See |
y |
vector of response values |
X |
Design matrix of covariates. Row |
locs |
matrix of locations. Row |
NNlist |
A neighbor list object, the output from |
Value
a list containing
-
loglik
: the loglikelihood -
grad
: gradient with respect to covariance parameters -
info
: Fisher information for covariance parameters -
betahat
: profile likelihood estimate of regression coefs -
betainfo
: information matrix forbetahat
.
The covariance
matrix for $betahat
is the inverse of $betainfo
.
Examples
n1 <- 20
n2 <- 20
n <- n1*n2
locs <- as.matrix( expand.grid( (1:n1)/n1, (1:n2)/n2 ) )
X <- cbind(rep(1,n),locs[,2])
covparms <- c(2, 0.2, 0.75, 0)
y <- fast_Gp_sim(covparms, "matern_isotropic", locs, 50 )
ord <- order_maxmin(locs)
NNarray <- find_ordered_nn(locs,20)
NNlist <- group_obs(NNarray)
#loglik <- vecchia_grouped_profbeta_loglik_grad_info(
# covparms, "matern_isotropic", y, X, locs, NNlist )