matern_anisotropic3D {GpGp} | R Documentation |
Geometrically anisotropic Matern covariance function (three dimensions)
Description
From a matrix of locations and covariance parameters of the form (variance, L11, L21, L22, L31, L32, L33, smoothness, nugget), return the square matrix of all pairwise covariances.
Usage
matern_anisotropic3D(covparms, locs)
d_matern_anisotropic3D(covparms, locs)
d_matern_anisotropic3D_alt(covparms, locs)
Arguments
covparms |
A vector with covariance parameters in the form (variance, L11, L21, L22, L31, L32, L33, smoothness, nugget) |
locs |
A matrix with |
Value
A matrix with n
rows and n
columns, with the i,j entry
containing the covariance between observations at locs[i,]
and
locs[j,]
.
Functions
-
d_matern_anisotropic3D()
: Derivatives of anisotropic Matern covariance -
d_matern_anisotropic3D_alt()
: Derivatives of anisotropic Matern covariance
Parameterization
The covariance parameter vector is (variance, L11, L21, L22, L31, L32, L33, smoothness, nugget) where L11, L21, L22, L31, L32, L33 are the six non-zero entries of a lower-triangular matrix L. The covariances are
M(x,y) = \sigma^2 2^{1-\nu}/\Gamma(\nu) (|| L x - L y || )^\nu K_\nu(|| L x - L y ||)
This means that L11 is interpreted as an inverse range parameter in the
first dimension.
The nugget value \sigma^2 \tau^2
is added to the diagonal of the covariance matrix.
NOTE: the nugget is \sigma^2 \tau^2
, not \tau^2
.