| exponential_nonstat_var {GpGp} | R Documentation | 
Isotropic exponential covariance function, nonstationary variances
Description
From a matrix of locations and covariance parameters of the form (variance, range, nugget, <nonstat variance parameters>), return the square matrix of all pairwise covariances.
Usage
exponential_nonstat_var(covparms, Z)
d_exponential_nonstat_var(covparms, Z)
Arguments
| covparms | A vector with covariance parameters
in the form (variance, range, nugget, <nonstat variance parameters>).
The number of nonstationary variance parameters should equal  | 
| Z | A matrix with  | 
Value
A matrix with n rows and n columns, with the i,j entry
containing the covariance between observations at locs[i,] and
locs[j,].
Functions
-  d_exponential_nonstat_var(): Derivatives with respect to parameters
Parameterization
This covariance function multiplies the isotropic exponential covariance by a nonstationary variance function. The form of the covariance is
 C(x,y) = exp( \phi(x) + \phi(y) ) M(x,y) 
where M(x,y) is the isotropic exponential covariance, and
 \phi(x) = c_1 \phi_1(x) + ... + c_p \phi_p(x) 
where \phi_1,...,\phi_p are the spatial basis functions
contained in the last p columns of Z, and 
c_1,...,c_p are the nonstationary variance parameters.