exponential_isotropic {GpGp} | R Documentation |
Isotropic exponential covariance function
Description
From a matrix of locations and covariance parameters of the form (variance, range, nugget), return the square matrix of all pairwise covariances.
Usage
exponential_isotropic(covparms, locs)
d_exponential_isotropic(covparms, locs)
d_matern15_isotropic(covparms, locs)
d_matern25_isotropic(covparms, locs)
Arguments
covparms |
A vector with covariance parameters in the form (variance, range, nugget) |
locs |
A matrix with |
Value
A matrix with n
rows and n
columns, with the i,j entry
containing the covariance between observations at locs[i,]
and
locs[j,]
.
Functions
-
d_exponential_isotropic()
: Derivatives of isotropic exponential covariance -
d_matern15_isotropic()
: Derivatives of isotropic matern covariance with smoothness 1.5 -
d_matern25_isotropic()
: Derivatives of isotropic matern covariance function with smoothness 2.5
Parameterization
The covariance parameter vector is (variance, range, nugget)
= (\sigma^2,\alpha,\tau^2)
, and the covariance function is parameterized
as
M(x,y) = \sigma^2 exp( - || x - y ||/ \alpha )
The nugget value \sigma^2 \tau^2
is added to the diagonal of the covariance matrix.
NOTE: the nugget is \sigma^2 \tau^2
, not \tau^2
.