exponential_anisotropic3D {GpGp} | R Documentation |
Geometrically anisotropic exponential covariance function (three dimensions)
Description
From a matrix of locations and covariance parameters of the form (variance, L11, L21, L22, L31, L32, L33, nugget), return the square matrix of all pairwise covariances.
Usage
exponential_anisotropic3D(covparms, locs)
d_exponential_anisotropic3D(covparms, locs)
Arguments
covparms |
A vector with covariance parameters in the form (variance, L11, L21, L22, L31, L32, L33, nugget) |
locs |
A matrix with |
Value
A matrix with n
rows and n
columns, with the i,j entry
containing the covariance between observations at locs[i,]
and
locs[j,]
.
Functions
-
d_exponential_anisotropic3D()
: Derivatives of anisotropic exponential covariance
Parameterization
The covariance parameter vector is (variance, L11, L21, L22, L31, L32, L33, nugget) where L11, L21, L22, L31, L32, L33 are the six non-zero entries of a lower-triangular matrix L. The covariances are
M(x,y) = \sigma^2 exp(-|| L x - L y || )
This means that L11 is interpreted as an inverse range parameter in the
first dimension.
The nugget value \sigma^2 \tau^2
is added to the diagonal of the covariance matrix.
NOTE: the nugget is \sigma^2 \tau^2
, not \tau^2
.