Gmedian-package {Gmedian} | R Documentation |
Geometric Median, k-Medians Clustering and Robust Median PCA
Description
The geometric median (also called spatial median or L1 median) is a robust multivariate indicator of central position. This library provides fast estimation procedures that can handle rapidly large samples of high dimensional data. Function Gmedian
computes the geometric median of a numerical data set with averaged stochastic gradient algorithms, whereas GmedianCov
computes the median covariation matrix, a useful indicator for robust PCA. Robust clustering, based on the geometric k-medians, can also be performed with the same type of recursive algorithm thanks to kGmedian
.
Less fast estimation procedures based on Weiszfeld's algorithm are also available : function Weiszfeld
computes the geometric median whereas WeiszfeldCov
computes the median covariation matrix. These procedures may be preferred for small and moderate sample sizes. Note that weighting statistical units (for example with survey sampling weights) is allowed.
Details
Package: | Gmedian |
Type: | Package |
Title: | Geometric Median, k-Medians Clustering and Robust Median PCA |
Version: | 1.2.7 |
Date: | 2022-08-06 |
Author: | Herve Cardot |
Maintainer: | Herve Cardot <herve.cardot@u-bourgogne.fr> |
Description: | Fast algorithms for robust estimation with large samples of multivariate observations. Estimation of the geometric median, robust k-Gmedian clustering, and robust PCA based on the Gmedian covariation matrix. |
License: | GPL (>= 2) |
Depends: | R (>= 3.0.0) |
Imports: | Rcpp (>= 0.12.6), RSpectra, robustbase |
LinkingTo: | Rcpp, RcppArmadillo, RSpectra |
NeedsCompilation: | yes |
Packaged: | 2016-09-03 12:29:52 UTC; cardot |
Repository: | CRAN |
Date/Publication: | 2016-09-05 16:35:51 |
Index of help topics:
Gmedian Gmedian Gmedian-package Geometric Median, k-Medians Clustering and Robust Median PCA GmedianCov GmedianCov Weiszfeld Weiszfeld WeiszfeldCov WeiszfeldCov kGmedian kGmedian
Author(s)
Herve Cardot
Maintainer: Herve Cardot <herve.cardot@u-bourgogne.fr>
References
Cardot, H., Cenac, P. and Zitt, P-A. (2013). Efficient and fast estimation of the geometric median in Hilbert spaces with an averaged stochastic gradient algorithm. Bernoulli, 19, 18-43.
Cardot, H. and Godichon-Baggioni, A. (2017). Fast Estimation of the Median Covariation Matrix with Application to Online Robust Principal Component7s Analysis. TEST, 26, 461-480.
Cardot, H., Cenac, P. and Monnez, J-M. (2012). A fast and recursive algorithm for clustering large datasets with k-medians. Computational Statistics and Data Analysis, 56, 1434-1449.
Lardin, P., Cardot, H. and Goga, C. (2014). Analyzing large datasets of functional data : a survey sampling point of view. Journal de la SFdS, 155, 70-94.
Vardi, Y. and Zhang, C.-H. (2000). The multivariate L1-median and associated data depth. Proc. Natl. Acad. Sci. USA, 97(4):1423-1426.