simulate_gaussian {GlmSimulatoR} | R Documentation |
Create ideal data for a generalized linear model.
Description
Create ideal data for a generalized linear model.
Usage
simulate_gaussian(
N = 10000,
link = "identity",
weights = 1:3,
x_range = 1,
unrelated = 0,
ancillary = 1
)
simulate_binomial(
N = 10000,
link = "logit",
weights = c(0.1, 0.2),
x_range = 1,
unrelated = 0
)
simulate_gamma(
N = 10000,
link = "inverse",
weights = 1:3,
x_range = 1,
unrelated = 0,
ancillary = 0.05
)
simulate_poisson(
N = 10000,
link = "log",
weights = c(0.5, 1),
x_range = 1,
unrelated = 0
)
simulate_inverse_gaussian(
N = 10000,
link = "1/mu^2",
weights = 1:3,
x_range = 1,
unrelated = 0,
ancillary = 0.3333
)
simulate_negative_binomial(
N = 10000,
link = "log",
weights = c(0.5, 1),
x_range = 1,
unrelated = 0,
ancillary = 1
)
simulate_tweedie(
N = 10000,
link = "log",
weights = 0.02,
x_range = 1,
unrelated = 0,
ancillary = 1.15
)
Arguments
N |
Sample size. (Default: 10000) |
link |
Link function. See |
weights |
Betas in glm model. |
x_range |
range of x variables. |
unrelated |
Number of unrelated features to return. (Default: 0) |
ancillary |
Ancillary parameter for continuous families and negative binomial. See details. |
Details
For many families, it is possible to pick weights that cause inverse link(X * weights) to be mathematically invalid. For example, the log link for binomial regression defines P(Y=1) as exp(X * weights) which can be above one. If this happens, the function will error with a helpful message.
The intercept in the underlying link(Y) = X * weights + intercept is always max(weights). In simulate_gaussian(link = "inverse", weights = 1:3), the model is (1/Y) = 1*X1 + 2*X2 + 3*X3 + 3.
links
gaussian: identity, log, inverse
binomial: logit, probit, cauchit, loglog, cloglog, log, logc, identity
gamma: inverse, identity, log
poisson: log, identity, sqrt
inverse gaussian: 1/mu^2, inverse, identity, log
negative binomial: log, identity, sqrt
tweedie: log, identity, sqrt, inverse
The default link is the first link listed for each family.
ancillary parameter
gaussian: standard deviation
binomial: N/A
gamma: scale parameter
poisson: N/A
inverse gaussian: dispersion parameter
negative binomial: theta.
tweedie: rho
Value
A tibble with a response variable and predictors.
Examples
library(GlmSimulatoR)
library(ggplot2)
library(MASS)
# Do glm and lm estimate the same weights? Yes
set.seed(1)
simdata <- simulate_gaussian()
linear_model <- lm(Y ~ X1 + X2 + X3, data = simdata)
glm_model <- glm(Y ~ X1 + X2 + X3,
data = simdata,
family = gaussian(link = "identity")
)
summary(linear_model)
summary(glm_model)
rm(linear_model, glm_model, simdata)
# If the link is not identity, will the response
# variable still be normal? Yes
set.seed(1)
simdata <- simulate_gaussian(N = 1000, link = "log", weights = c(.1, .2))
ggplot(simdata, aes(x = Y)) +
geom_histogram(bins = 30)
rm(simdata)
# Is AIC lower for the correct link? For ten thousand data points, depends
# on seed!
set.seed(1)
simdata <- simulate_gaussian(N = 10000, link = "inverse", weights = 1)
glm_correct_link <- glm(Y ~ X1,
data = simdata,
family = gaussian(link = "inverse")
)
glm_wrong_link <- glm(Y ~ X1,
data = simdata,
family = gaussian(link = "identity")
)
summary(glm_correct_link)$aic
summary(glm_wrong_link)$aic
rm(simdata, glm_correct_link, glm_wrong_link)
# Does a stepwise search find the correct model for logistic regression? Yes
# 3 related variables. 3 unrelated variables.
set.seed(1)
simdata <- simulate_binomial(
N = 10000, link = "logit",
weights = c(.3, .4, .5), unrelated = 3
)
scope_arg <- list(
lower = Y ~ 1,
upper = Y ~ X1 + X2 + X3 + Unrelated1 + Unrelated2 + Unrelated3
)
starting_model <- glm(Y ~ 1,
data = simdata,
family = binomial(link = "logit")
)
glm_model <- stepAIC(starting_model, scope_arg)
summary(glm_model)
rm(simdata, scope_arg, starting_model, glm_model)
# When the resposne is a gamma distribution, what does a scatter plot between
# X and Y look like?
set.seed(1)
simdata <- simulate_gamma(weights = 1)
ggplot(simdata, aes(x = X1, y = Y)) +
geom_point()
rm(simdata)