par_trans {GeodRegr} | R Documentation |
Parallel transport
Description
Performs \Gamma_{p_1 \rightarrow p_2}(v)
, parallel transport along the
unique minimizing geodesic connecting p_1
and p_2
, if it exists,
on the given manifold.
Usage
par_trans(manifold, p1, p2, v)
Arguments
manifold |
Type of manifold ( |
p1 |
A vector (or column matrix) representing a point on the manifold. |
p2 |
A vector (or column matrix) representing a point on the manifold. |
v |
A vector (or column matrix) tangent to |
Details
On the sphere, there is no unique minimizing geodesic connecting p_1
and -p_1
.
Value
A vector tangent to p2
.
Author(s)
Ha-Young Shin
References
Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on Riemannian manifolds. International Journal of Computer Vision, 105, 171-185.
Cornea, E., Zhu, H., Kim, P. and Ibrahim, J. G. (2017). Regression models on Riemannian symmetric spaces. Journal of the Royal Statistical Society: Series B, 79, 463-482.
Calinon, S. (2020). Gaussians on Riemannian manifolds: Applications for robot learning and adaptive control. IEEE Robotics & Automation Magazine, 27, 33-45.
Shin, H.-Y. and Oh H.-S. (2020). Robust Geodesic Regression. <arXiv:2007.04518>
Examples
p1 <- matrix(rnorm(10), ncol = 2)
p1 <- p1[, 1] + (1i) * p1[, 2]
p1 <- (p1 - mean(p1)) / norm(p1 - mean(p1), type = '2') # project onto pre-shape space
p2 <- matrix(rnorm(10), ncol = 2)
p2 <- p2[, 1] + (1i) * p2[, 2]
p2 <- (p2 - mean(p2)) / norm(p2 - mean(p2), type = '2') # project onto pre-shape space
p3 <- matrix(rnorm(10), ncol = 2)
p3 <- p3[, 1] + (1i) * p3[, 2]
p3 <- (p3 - mean(p3)) / norm(p3 - mean(p3), type = '2') # project onto pre-shape space
v <- log_map('kendall', p1, p3)
par_trans('kendall', p1, p2, v)