intrinsic_location {GeodRegr} | R Documentation |
Gradient descent for location based on M-type estimators
Description
Finds \mathrm{argmin}_{p\in M}\sum_{i=1} ^ {N} \rho(d(p,y_i))
through a
gradient descent algorithm.
Usage
intrinsic_location(
manifold,
y,
estimator,
c = NULL,
p_tol = 1e-05,
V_tol = 1e-05,
max_iter = 1e+05
)
Arguments
manifold |
Type of manifold ( |
y |
A matrix or data frame whose columns represent points on the manifold. |
estimator |
M-type estimator ( |
c |
Multiplier of |
p_tol |
Termination condition for the distance between consecutive
updates of |
V_tol |
Termination condition for the distance between columns of
consecutive updates of |
max_iter |
Maximum number of gradient descent steps before ending the algorithm. |
Details
In the case of the 'sphere'
, an error will be raised if all points are
on a pair of antipodes.
Value
A vector representing the location estimate
Author(s)
Ha-Young Shin
References
Fletcher, P. T. (2013). Geodesic regression and the theory of least squares on Riemannian manifolds. International Journal of Computer Vision, 105, 171-185.
Kim, H. J., Adluru, N., Collins, M. D., Chung, M. K., Bendin, B. B., Johnson, S. C., Davidson, R. J. and Singh, V. (2014). Multivariate general linear models (MGLM) on Riemannian manifolds with applications to statistical analysis of diffusion weighted images. 2014 IEEE Conference on Computer Vision and Pattern Recognition, 2705-2712.
Shin, H.-Y. and Oh H.-S. (2020). Robust Geodesic Regression. <arXiv:2007.04518>
See Also
geo_reg
, rbase.mean
,
rbase.median
.
Examples
y <- matrix(runif(100, 1000, 2000), nrow = 10)
intrinsic_location('euclidean', y, 'l2')