cov.askey {GeneralizedWendland} | R Documentation |
Askey covariance function
Description
A covariance function of the form
\rho_{\beta,\kappa,\mu} = \begin{cases} \sigma + \theta \quad 0 \leq r < \epsilon \\ (1-r)^{\mu} \quad \epsilon \leq r < 1 \\ 0 \quad 1 \leq r \end{cases}
where r=h/\beta
. This is equivalent to the generalized Wendland covariance with \kappa=0
, but much more computationally efficient.
Usage
cov.askey(h, theta, ..., cov.args = list())
Arguments
h |
A numeric vector, matrix, or spam object storing distances. |
theta |
Numeric vector |
... |
Other arguments. |
cov.args |
Named list of arguments. See Details. |
Details
Using the list cov.args, users can provide the following arguments:
- cov.eps (default:
.Machine$double.eps^0.5
) The threshold distance
\epsilon
below which the function will return\sigma + \theta
.
Value
Returns an object of the same type as input object h which stores the computed covariance values, i.e. a spam object if input h was also a spam object.
Author(s)
Thomas Caspar Fischer
References
Moreno Bevilacqua and Tarik Faouzi and Reinhard Furrer and Emilio Porcu (2019) Estimation and prediction using generalized Wendland covariance functions under fixed domain asymptotics, Annals of Statistics, 47(2), 828–856.