nigCalcRange {GeneralizedHyperbolic} | R Documentation |
Range of a normal inverse Gaussian Distribution
Description
Given the parameter vector param of a normal inverse Gaussian distribution,
this function calculates the range outside of which the distribution
has negligible probability, or the density function is negligible, to
a specified tolerance. The parameterization used
is the (\alpha, \beta)
one (see
dnig
). To use another parameterization, use
hyperbChangePars
.
Usage
nigCalcRange(mu = 0, delta = 1, alpha = 1, beta = 0,
param = c(mu, delta, alpha, beta),
tol = 10^(-5), density = TRUE, ...)
Arguments
mu |
|
delta |
|
alpha |
|
beta |
|
param |
Value of parameter vector specifying the normal inverse Gaussian
distribution. This takes the form |
tol |
Tolerance. |
density |
Logical. If |
... |
Extra arguments for calls to |
Details
The particular normal inverse Gaussian distribution being considered is
specified by the parameter value param
.
If density = FALSE
, the function calculates
the effective range of the distribution, which is used in calculating
the distribution function and quantiles, and may be used in determining
the range when plotting the distribution. By effective range is meant that
the probability of an observation being greater than the upper end is
less than the specified tolerance tol
. Likewise for being smaller
than the lower end of the range. Note that this has not been implemented
yet.
If density = TRUE
, the function gives a range, outside of which
the density is less than the given tolerance. Useful for plotting the
density.
Value
A two-component vector giving the lower and upper ends of the range.
Author(s)
David Scott d.scott@auckland.ac.nz, Christine Yang Dong
References
Barndorff-Nielsen, O. and Blæsild, P (1983). Hyperbolic distributions. In Encyclopedia of Statistical Sciences, eds., Johnson, N. L., Kotz, S. and Read, C. B., Vol. 3, pp. 700–707. New York: Wiley.
Paolella, Marc S. (2007) Intermediate Probability: A Computational Approach, Chichester: Wiley
See Also
Examples
par(mfrow = c(1, 2))
param <- c(0, 1, 3, 1)
nigRange <- nigCalcRange(param = param, tol = 10^(-3))
nigRange
curve(pnig(x, param = param), nigRange[1], nigRange[2])
maxDens <- dnig(nigMode(param = param), param = param)
nigRange <- nigCalcRange(param = param, tol = 10^(-3) * maxDens, density = TRUE)
nigRange
curve(dnig(x, param = param), nigRange[1], nigRange[2])