flexorhtest.pvalue {GeneF} | R Documentation |
Significance Assessment for the Flexible Order Restricted Hypothesis Testing
Description
These functions evaluate the p
-values from an individual or multiple flexible order restricted hypothesis testing.
Usage
flexisoreg.pvalue(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
flexisoreg.poolpvalues(m, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
flexmonoreg.pvalue(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
flexmonoreg.poolpvalues(m, x, lambda=0, alpha.location=1, alpha.adjacency=0.5, B=100)
Arguments
m |
a matrix of observed data, where samples are in columns and variables are in rows |
y |
a vector of observed data |
x |
a vector of ordinal group labels correponding to |
lambda |
a lower location bound for partitioned groups other than the first one |
alpha.location |
|
alpha.adjacency |
|
B |
the number of permutations for |
Details
flexisoreg.pvalue
and flexmonoreg.pvalue
provide the permutation p
-value for an individual flexible order restricted hypothesis testing.
flexisoreg.poolpvalues
and flexmonoreg.poolpvalues
provide the pooled permutation p
-values for multiple flexible order restricted hypothesis testing.
Value
flexisoreg.pvalue
and flexmonoreg.pvalue
return a permutation p
-value.
flexisoreg.poolpvalues
and flexmonoreg.poolpvalues
return a vector of pooled permutation p
-values.
Note
These functions are used in conjunction with flexisoreg
, flexisoreg.stat
, flexmonoreg
and flexmonoreg.stat
.
Author(s)
Yinglei Lai ylai@gwu.edu
References
Yinglei Lai (2007) A flexible order restricted hypothesis testing and its application to gene expression data. Technical Report
Examples
#generate ordinal group lables x
x <- runif(100)*6
x <- round(x,0)/3
#generate true values z
z <- round(x^2,0)
#generate 6 vectors in a matrix for observed values, some noises and some not
m <- array(double(6*100), dim=c(6,100))
for(k in 1:3)
m[k,] <- rnorm(100)
for(k in 4:6)
m[k,] <- z + rnorm(100)
#print default results
par(mfrow=c(2,3))
for(k in 1:6){
print(paste("The ", k, "-th vector", sep=""))
y <- m[k,]
plot(x,y,main=k)
print(flexisoreg.stat(y,x))
print(flexisoreg.pvalue(y,x,B=20))
print(flexisoreg.stat(y,0-x))
print(flexisoreg.pvalue(y,0-x,B=20))
print(flexmonoreg.stat(y,x))
print(flexmonoreg.pvalue(y,x,B=20))
}
flexisoreg.poolpvalues(m, x, B=20)
flexmonoreg.poolpvalues(m, x, B=20)