flexorhtest {GeneF} | R Documentation |
A Flexible Order Restricted Hypothesis Testing
Description
These functions test the hypothesis regarding population means from ordered sample groups. Restrictions like a weakly/general/strongly isotonic/monotonic order as well as a lower bound for the location can be imposed on the population means. A partition of sample groups and the corresponding estimates of population means are also provided.
Usage
flexisoreg(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
flexisoreg.stat(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
flexmonoreg(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
flexmonoreg.stat(y, x, lambda = 0, alpha.location = 1, alpha.adjacency = 0.5)
Arguments
y |
a vector of observed data |
x |
a vector of ordinal group labels correponding to |
lambda |
a lower location bound for partitioned groups other than the first one |
alpha.location |
|
alpha.adjacency |
|
Details
flexisoreg
is used for flexible nondecreasing order restricted hypothesis testing.
flexmonoreg
is used for flexible nondecreasing or nonincreasing order restricted hypothesis testing.
flexisoreg.stat
and flexmonoreg.stat
only return an F
-statistic, which is convenient for multiple comparison.
Value
groups |
A partition of sample groups |
estimates |
estimated population means |
statistic |
an |
Note
Since the p
-value of test has to be evaluated by permutation method, these functions will not return any p
-value. For the permutation p
-value of an individual test, see flexisoreg.pvalue
and flexmonoreg.pvalue
. For the pooled permutation p
-values of multiple tests, see flexisoreg.poolpvalues
and flexmonoreg.poolpvalues
.
Author(s)
Yinglei Lai ylai@gwu.edu
References
Yinglei Lai (2007) A flexible order restricted hypothesis testing and its application to gene expression data. Technical Report
Examples
#generate ordinal group lables x
x <- runif(100)*6
x <- round(x,0)/3
#generate true values z
z <- round(x^2,0)
#generate observed values y
y <- z + rnorm(100)
#print default results
print(rbind(x,z,y))
print(flexisoreg(y,x))
print(flexisoreg.stat(y,x))
print(flexisoreg(y,0-x))
print(flexisoreg.stat(y,0-x))
print(flexmonoreg(y,x))
print(flexmonoreg.stat(y,x))
#plots for illustration
par(mfrow=c(2,3), mai=c(0.6, 0.6, 0.3, 0.1))
plot(x,y, main="True Model",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, z, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=1, alpha.location=0.05, alpha.adjacency=1)
plot(x,y, main="Location Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=1, alpha.location=0.05, alpha.adjacency=0.05)
plot(x,y, main="Location and Strong Order Restrictions",
cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.95)
plot(x,y, main="Weak Order Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.5)
plot(x,y, main="General Order Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)
results <- flexisoreg(y, x, lambda=0, alpha.location=1, alpha.adjacency=0.05)
plot(x,y, main="Strong Order Restriction",cex.axis=1.5, cex.lab=1.5, cex.main=1.5, cex=1.5)
lines(x, results$estimate, type="p", pch=15, col="black", cex=2.5)