multi.mtd {GenMarkov} | R Documentation |
Estimation of Multivariate Markov Chains - MTD model
Description
This function estimates the Mixture Distribution Model (Raftery (1985)) for Multivariate Markov Chains. It considers Berchtold (2001) optimization algorithm for the parameters and estimates the probabilities transition matrices as proposed in Ching (2002).
Usage
multi.mtd(y, deltaStop = 1e-04, is_constrained = TRUE, delta = 0.1)
Arguments
y |
matrix of categorical data sequences |
deltaStop |
value below which the optimization phases of the parameters stop |
is_constrained |
flag indicating whether the function will consider the usual set of constraints (usual set: TRUE, new set of constraints: FALSE). |
delta |
the amount of change to increase/decrease in the parameters for each iteration of the optimization algorithm. |
Value
The function returns a list with the parameter estimates, standard-errors, z-statistics, p-values and the value of the log-likelihood function, for each equation.
Note
See details of the optimization procedure in Berchtold (2001).
References
Raftery, A. E. (1985). A Model for High-Order Markov Chains. Journal of the Royal Statistical Society. Series B (Methodological), 47(3), 528-539. http://www.jstor.org/stable/2345788
Berchtold, A. (2001). Estimation in the Mixture Transition Distribution Model. Journal of Time Series Analysis, 22(4), 379-397.doi:10.1111/1467-9892.00231
Ching, W. K., E. S. Fung, and M. K. Ng (2002). A multivariate Markov chain model for categorical data sequences and its applications in demand predictions. IMA Journal of Management Mathematics, 13(3), 187-199. doi:10.1093/imaman/13.3.187
Examples
data(stockreturns)
s <- cbind(stockreturns$sp500, stockreturns$djia)
multi.mtd(s)