| kernel_sum {GauPro} | R Documentation |
Gaussian Kernel R6 class
Description
Gaussian Kernel R6 class
Gaussian Kernel R6 class
Format
R6Class object.
Value
Object of R6Class with methods for fitting GP model.
Super class
GauPro::GauPro_kernel -> GauPro_kernel_sum
Public fields
k1kernel 1
k2kernel 2
k1_param_lengthparam length of kernel 1
k2_param_lengthparam length of kernel 2
k1plparam length of kernel 1
k2plparam length of kernel 2
s2variance
s2_estIs s2 being estimated?
Methods
Public methods
Inherited methods
Method new()
Initialize kernel
Usage
kernel_sum$new(k1, k2, useC = TRUE)
Arguments
k1Kernel 1
k2Kernel 2
useCShould C code used? Not applicable for kernel sum.
Method k()
Calculate covariance between two points
Usage
kernel_sum$k(x, y = NULL, params, ...)
Arguments
xvector.
yvector, optional. If excluded, find correlation of x with itself.
paramsparameters to use instead of beta and s2.
...Not used
Method param_optim_start()
Starting point for parameters for optimization
Usage
kernel_sum$param_optim_start(jitter = F, y)
Arguments
jitterShould there be a jitter?
yOutput
Method param_optim_start0()
Starting point for parameters for optimization
Usage
kernel_sum$param_optim_start0(jitter = F, y)
Arguments
jitterShould there be a jitter?
yOutput
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
kernel_sum$param_optim_lower()
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
kernel_sum$param_optim_upper()
Method set_params_from_optim()
Set parameters from optimization output
Usage
kernel_sum$set_params_from_optim(optim_out)
Arguments
optim_outOutput from optimization
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
kernel_sum$dC_dparams(params = NULL, C, X, C_nonug, nug)
Arguments
paramsKernel parameters
CCovariance with nugget
Xmatrix of points in rows
C_nonugCovariance without nugget added to diagonal
nugValue of nugget
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
kernel_sum$C_dC_dparams(params = NULL, X, nug)
Arguments
paramsKernel parameters
Xmatrix of points in rows
nugValue of nugget
Method dC_dx()
Derivative of covariance with respect to X
Usage
kernel_sum$dC_dx(XX, X)
Arguments
XXmatrix of points
Xmatrix of points to take derivative with respect to
Method s2_from_params()
Get s2 from params vector
Usage
kernel_sum$s2_from_params(params)
Arguments
paramsparameter vector
s2_estIs s2 being estimated?
Method print()
Print this object
Usage
kernel_sum$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
kernel_sum$clone(deep = FALSE)
Arguments
deepWhether to make a deep clone.
Examples
k1 <- Exponential$new(beta=1)
k2 <- Matern32$new(beta=2)
k <- k1 + k2
k$k(matrix(c(2,1), ncol=1))