kernel_product {GauPro} | R Documentation |
Gaussian Kernel R6 class
Description
Gaussian Kernel R6 class
Gaussian Kernel R6 class
Format
R6Class
object.
Value
Object of R6Class
with methods for fitting GP model.
Super class
GauPro::GauPro_kernel
-> GauPro_kernel_product
Public fields
k1
kernel 1
k2
kernel 2
s2
Variance
Active bindings
k1pl
param length of kernel 1
k2pl
param length of kernel 2
s2_est
Is s2 being estimated?
Methods
Public methods
Inherited methods
Method new()
Is s2 being estimated?
Length of the parameters of k1
Length of the parameters of k2
Initialize kernel
Usage
kernel_product$new(k1, k2, useC = TRUE)
Arguments
k1
Kernel 1
k2
Kernel 2
useC
Should C code used? Not applicable for kernel product.
Method k()
Calculate covariance between two points
Usage
kernel_product$k(x, y = NULL, params, ...)
Arguments
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
params
parameters to use instead of beta and s2.
...
Not used
Method param_optim_start()
Starting point for parameters for optimization
Usage
kernel_product$param_optim_start(jitter = F, y)
Arguments
jitter
Should there be a jitter?
y
Output
Method param_optim_start0()
Starting point for parameters for optimization
Usage
kernel_product$param_optim_start0(jitter = F, y)
Arguments
jitter
Should there be a jitter?
y
Output
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
kernel_product$param_optim_lower()
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
kernel_product$param_optim_upper()
Method set_params_from_optim()
Set parameters from optimization output
Usage
kernel_product$set_params_from_optim(optim_out)
Arguments
optim_out
Output from optimization
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
kernel_product$dC_dparams(params = NULL, C, X, C_nonug, nug)
Arguments
params
Kernel parameters
C
Covariance with nugget
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
nug
Value of nugget
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
kernel_product$C_dC_dparams(params = NULL, X, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
nug
Value of nugget
Method dC_dx()
Derivative of covariance with respect to X
Usage
kernel_product$dC_dx(XX, X)
Arguments
XX
matrix of points
X
matrix of points to take derivative with respect to
Method s2_from_params()
Get s2 from params vector
Usage
kernel_product$s2_from_params(params, s2_est = self$s2_est)
Arguments
params
parameter vector
s2_est
Is s2 being estimated?
Method print()
Print this object
Usage
kernel_product$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
kernel_product$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
k1 <- Exponential$new(beta=1)
k2 <- Matern32$new(beta=2)
k <- k1 * k2
k$k(matrix(c(2,1), ncol=1))