gpkm {GauPro} | R Documentation |
Gaussian process regression model
Description
Fits a Gaussian process regression model to data.
An R6 object is returned with many methods.
'gpkm()' is an alias for 'GauPro_kernel_model$new()'. For full documentation, see documentation for 'GauPro_kernel_model'.
Standard methods that work include 'plot()', 'summary()', and 'predict()'.
Usage
gpkm(
X,
Z,
kernel,
trend,
verbose = 0,
useC = TRUE,
useGrad = TRUE,
parallel = FALSE,
parallel_cores = "detect",
nug = 1e-06,
nug.min = 1e-08,
nug.max = 100,
nug.est = TRUE,
param.est = TRUE,
restarts = 0,
normalize = FALSE,
optimizer = "L-BFGS-B",
track_optim = FALSE,
formula,
data,
...
)
Arguments
X |
Matrix whose rows are the input points |
Z |
Output points corresponding to X |
kernel |
The kernel to use. E.g., Gaussian$new(). |
trend |
Trend to use. E.g., trend_constant$new(). |
verbose |
Amount of stuff to print. 0 is little, 2 is a lot. |
useC |
Should C code be used when possible? Should be faster. |
useGrad |
Should the gradient be used? |
parallel |
Should code be run in parallel? Make optimization faster but uses more computer resources. |
parallel_cores |
When using parallel, how many cores should be used? |
nug |
Value for the nugget. The starting value if estimating it. |
nug.min |
Minimum allowable value for the nugget. |
nug.max |
Maximum allowable value for the nugget. |
nug.est |
Should the nugget be estimated? |
param.est |
Should the kernel parameters be estimated? |
restarts |
How many optimization restarts should be used when estimating parameters? |
normalize |
Should the data be normalized? |
optimizer |
What algorithm should be used to optimize the parameters. |
track_optim |
Should it track the parameters evaluated while optimizing? |
formula |
Formula for the data if giving in a data frame. |
data |
Data frame of data. Use in conjunction with formula. |
... |
Not used |
Details
The default kernel is a Matern 5/2 kernel, but factor/character inputs will be given factor kernels.