White {GauPro} | R Documentation |
White noise Kernel R6 class
Description
Initialize kernel object
Usage
k_White(
s2 = 1,
D,
s2_lower = 1e-08,
s2_upper = 1e+08,
s2_est = TRUE,
useC = TRUE
)
Arguments
s2 |
Initial variance |
D |
Number of input dimensions of data |
s2_lower |
Lower bound for s2 |
s2_upper |
Upper bound for s2 |
s2_est |
Should s2 be estimated? |
useC |
Should C code used? Not implemented for White. |
Format
R6Class
object.
Value
Object of R6Class
with methods for fitting GP model.
Super class
GauPro::GauPro_kernel
-> GauPro_kernel_White
Public fields
s2
variance
logs2
Log of s2
logs2_lower
Lower bound of logs2
logs2_upper
Upper bound of logs2
s2_est
Should s2 be estimated?
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
White$new( s2 = 1, D, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
Arguments
s2
Initial variance
D
Number of input dimensions of data
s2_lower
Lower bound for s2
s2_upper
Upper bound for s2
s2_est
Should s2 be estimated?
useC
Should C code used? Not implemented for White.
Method k()
Calculate covariance between two points
Usage
White$k(x, y = NULL, s2 = self$s2, params = NULL)
Arguments
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
s2
Variance parameter.
params
parameters to use instead of beta and s2.
Method kone()
Find covariance of two points
Usage
White$kone(x, y, s2)
Arguments
x
vector
y
vector
s2
Variance parameter
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
White$dC_dparams(params = NULL, X, C_nonug, C, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
C
Covariance with nugget
nug
Value of nugget
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
White$C_dC_dparams(params = NULL, X, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
nug
Value of nugget
Method dC_dx()
Derivative of covariance with respect to X
Usage
White$dC_dx(XX, X, s2 = self$s2)
Arguments
XX
matrix of points
X
matrix of points to take derivative with respect to
s2
Variance parameter
theta
Correlation parameters
beta
log of theta
Method param_optim_start()
Starting point for parameters for optimization
Usage
White$param_optim_start(jitter = F, y, s2_est = self$s2_est)
Arguments
jitter
Should there be a jitter?
y
Output
s2_est
Is s2 being estimated?
Method param_optim_start0()
Starting point for parameters for optimization
Usage
White$param_optim_start0(jitter = F, y, s2_est = self$s2_est)
Arguments
jitter
Should there be a jitter?
y
Output
s2_est
Is s2 being estimated?
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
White$param_optim_lower(s2_est = self$s2_est)
Arguments
s2_est
Is s2 being estimated?
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
White$param_optim_upper(s2_est = self$s2_est)
Arguments
s2_est
Is s2 being estimated?
Method set_params_from_optim()
Set parameters from optimization output
Usage
White$set_params_from_optim(optim_out, s2_est = self$s2_est)
Arguments
optim_out
Output from optimization
s2_est
s2 estimate
Method s2_from_params()
Get s2 from params vector
Usage
White$s2_from_params(params, s2_est = self$s2_est)
Arguments
params
parameter vector
s2_est
Is s2 being estimated?
Method print()
Print this object
Usage
White$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
White$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
Examples
k1 <- White$new(s2=1e-8)