| White {GauPro} | R Documentation | 
White noise Kernel R6 class
Description
Initialize kernel object
Usage
k_White(
  s2 = 1,
  D,
  s2_lower = 1e-08,
  s2_upper = 1e+08,
  s2_est = TRUE,
  useC = TRUE
)
Arguments
| s2 | Initial variance | 
| D | Number of input dimensions of data | 
| s2_lower | Lower bound for s2 | 
| s2_upper | Upper bound for s2 | 
| s2_est | Should s2 be estimated? | 
| useC | Should C code used? Not implemented for White. | 
Format
R6Class object.
Value
Object of R6Class with methods for fitting GP model.
Super class
GauPro::GauPro_kernel -> GauPro_kernel_White
Public fields
- s2
- variance 
- logs2
- Log of s2 
- logs2_lower
- Lower bound of logs2 
- logs2_upper
- Upper bound of logs2 
- s2_est
- Should s2 be estimated? 
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
White$new( s2 = 1, D, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE )
Arguments
- s2
- Initial variance 
- D
- Number of input dimensions of data 
- s2_lower
- Lower bound for s2 
- s2_upper
- Upper bound for s2 
- s2_est
- Should s2 be estimated? 
- useC
- Should C code used? Not implemented for White. 
Method k()
Calculate covariance between two points
Usage
White$k(x, y = NULL, s2 = self$s2, params = NULL)
Arguments
- x
- vector. 
- y
- vector, optional. If excluded, find correlation of x with itself. 
- s2
- Variance parameter. 
- params
- parameters to use instead of beta and s2. 
Method kone()
Find covariance of two points
Usage
White$kone(x, y, s2)
Arguments
- x
- vector 
- y
- vector 
- s2
- Variance parameter 
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
White$dC_dparams(params = NULL, X, C_nonug, C, nug)
Arguments
- params
- Kernel parameters 
- X
- matrix of points in rows 
- C_nonug
- Covariance without nugget added to diagonal 
- C
- Covariance with nugget 
- nug
- Value of nugget 
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
White$C_dC_dparams(params = NULL, X, nug)
Arguments
- params
- Kernel parameters 
- X
- matrix of points in rows 
- nug
- Value of nugget 
Method dC_dx()
Derivative of covariance with respect to X
Usage
White$dC_dx(XX, X, s2 = self$s2)
Arguments
- XX
- matrix of points 
- X
- matrix of points to take derivative with respect to 
- s2
- Variance parameter 
- theta
- Correlation parameters 
- beta
- log of theta 
Method param_optim_start()
Starting point for parameters for optimization
Usage
White$param_optim_start(jitter = F, y, s2_est = self$s2_est)
Arguments
- jitter
- Should there be a jitter? 
- y
- Output 
- s2_est
- Is s2 being estimated? 
Method param_optim_start0()
Starting point for parameters for optimization
Usage
White$param_optim_start0(jitter = F, y, s2_est = self$s2_est)
Arguments
- jitter
- Should there be a jitter? 
- y
- Output 
- s2_est
- Is s2 being estimated? 
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
White$param_optim_lower(s2_est = self$s2_est)
Arguments
- s2_est
- Is s2 being estimated? 
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
White$param_optim_upper(s2_est = self$s2_est)
Arguments
- s2_est
- Is s2 being estimated? 
Method set_params_from_optim()
Set parameters from optimization output
Usage
White$set_params_from_optim(optim_out, s2_est = self$s2_est)
Arguments
- optim_out
- Output from optimization 
- s2_est
- s2 estimate 
Method s2_from_params()
Get s2 from params vector
Usage
White$s2_from_params(params, s2_est = self$s2_est)
Arguments
- params
- parameter vector 
- s2_est
- Is s2 being estimated? 
Method print()
Print this object
Usage
White$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
White$clone(deep = FALSE)
Arguments
- deep
- Whether to make a deep clone. 
Examples
k1 <- White$new(s2=1e-8)