OrderedFactorKernel {GauPro} | R Documentation |
Ordered Factor Kernel R6 class
Description
Ordered Factor Kernel R6 class
Ordered Factor Kernel R6 class
Usage
k_OrderedFactorKernel(
s2 = 1,
D,
nlevels,
xindex,
p_lower = 1e-08,
p_upper = 5,
p_est = TRUE,
s2_lower = 1e-08,
s2_upper = 1e+08,
s2_est = TRUE,
useC = TRUE,
offdiagequal = 1 - 1e-06
)
Arguments
s2 |
Initial variance |
D |
Number of input dimensions of data |
nlevels |
Number of levels for the factor |
xindex |
Index of the factor (which column of X) |
p_lower |
Lower bound for p |
p_upper |
Upper bound for p |
p_est |
Should p be estimated? |
s2_lower |
Lower bound for s2 |
s2_upper |
Upper bound for s2 |
s2_est |
Should s2 be estimated? |
useC |
Should C code used? Not implemented for FactorKernel yet. |
offdiagequal |
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget. |
Format
R6Class
object.
Details
Use for factor inputs that are considered to have an ordering
Value
Object of R6Class
with methods for fitting GP model.
Super class
GauPro::GauPro_kernel
-> GauPro_kernel_OrderedFactorKernel
Public fields
p
Parameter for correlation
p_est
Should p be estimated?
p_lower
Lower bound of p
p_upper
Upper bound of p
p_length
length of p
s2
variance
s2_est
Is s2 estimated?
logs2
Log of s2
logs2_lower
Lower bound of logs2
logs2_upper
Upper bound of logs2
xindex
Index of the factor (which column of X)
nlevels
Number of levels for the factor
offdiagequal
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget.
Methods
Public methods
Inherited methods
Method new()
Initialize kernel object
Usage
OrderedFactorKernel$new( s2 = 1, D = NULL, nlevels, xindex, p_lower = 1e-08, p_upper = 5, p_est = TRUE, s2_lower = 1e-08, s2_upper = 1e+08, s2_est = TRUE, useC = TRUE, offdiagequal = 1 - 1e-06 )
Arguments
s2
Initial variance
D
Number of input dimensions of data
nlevels
Number of levels for the factor
xindex
Index of X to use the kernel on
p_lower
Lower bound for p
p_upper
Upper bound for p
p_est
Should p be estimated?
s2_lower
Lower bound for s2
s2_upper
Upper bound for s2
s2_est
Should s2 be estimated?
useC
Should C code used? Much faster.
offdiagequal
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget.
p
Vector of distances in latent space
Method k()
Calculate covariance between two points
Usage
OrderedFactorKernel$k(x, y = NULL, p = self$p, s2 = self$s2, params = NULL)
Arguments
x
vector.
y
vector, optional. If excluded, find correlation of x with itself.
p
Correlation parameters.
s2
Variance parameter.
params
parameters to use instead of beta and s2.
Method kone()
Find covariance of two points
Usage
OrderedFactorKernel$kone( x, y, p, s2, isdiag = TRUE, offdiagequal = self$offdiagequal )
Arguments
x
vector
y
vector
p
correlation parameters on regular scale
s2
Variance parameter
isdiag
Is this on the diagonal of the covariance?
offdiagequal
What should offdiagonal values be set to when the indices are the same? Use to avoid decomposition errors, similar to adding a nugget.
Method dC_dparams()
Derivative of covariance with respect to parameters
Usage
OrderedFactorKernel$dC_dparams(params = NULL, X, C_nonug, C, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
C_nonug
Covariance without nugget added to diagonal
C
Covariance with nugget
nug
Value of nugget
Method C_dC_dparams()
Calculate covariance matrix and its derivative with respect to parameters
Usage
OrderedFactorKernel$C_dC_dparams(params = NULL, X, nug)
Arguments
params
Kernel parameters
X
matrix of points in rows
nug
Value of nugget
Method dC_dx()
Derivative of covariance with respect to X
Usage
OrderedFactorKernel$dC_dx(XX, X, ...)
Arguments
XX
matrix of points
X
matrix of points to take derivative with respect to
...
Additional args, not used
Method param_optim_start()
Starting point for parameters for optimization
Usage
OrderedFactorKernel$param_optim_start( jitter = F, y, p_est = self$p_est, s2_est = self$s2_est )
Arguments
jitter
Should there be a jitter?
y
Output
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
Method param_optim_start0()
Starting point for parameters for optimization
Usage
OrderedFactorKernel$param_optim_start0( jitter = F, y, p_est = self$p_est, s2_est = self$s2_est )
Arguments
jitter
Should there be a jitter?
y
Output
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
Method param_optim_lower()
Lower bounds of parameters for optimization
Usage
OrderedFactorKernel$param_optim_lower(p_est = self$p_est, s2_est = self$s2_est)
Arguments
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
Method param_optim_upper()
Upper bounds of parameters for optimization
Usage
OrderedFactorKernel$param_optim_upper(p_est = self$p_est, s2_est = self$s2_est)
Arguments
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
Method set_params_from_optim()
Set parameters from optimization output
Usage
OrderedFactorKernel$set_params_from_optim( optim_out, p_est = self$p_est, s2_est = self$s2_est )
Arguments
optim_out
Output from optimization
p_est
Is p being estimated?
s2_est
Is s2 being estimated?
Method s2_from_params()
Get s2 from params vector
Usage
OrderedFactorKernel$s2_from_params(params, s2_est = self$s2_est)
Arguments
params
parameter vector
s2_est
Is s2 being estimated?
Method plotLatent()
Plot the points in the latent space
Usage
OrderedFactorKernel$plotLatent()
Method print()
Print this object
Usage
OrderedFactorKernel$print()
Method clone()
The objects of this class are cloneable with this method.
Usage
OrderedFactorKernel$clone(deep = FALSE)
Arguments
deep
Whether to make a deep clone.
References
https://stackoverflow.com/questions/27086195/linear-index-upper-triangular-matrix
Examples
kk <- OrderedFactorKernel$new(D=1, nlevels=5, xindex=1)
kk$p <- (1:10)/100
kmat <- outer(1:5, 1:5, Vectorize(kk$k))
kmat
library(dplyr)
n <- 20
X <- cbind(matrix(runif(n,2,6), ncol=1),
matrix(sample(1:2, size=n, replace=TRUE), ncol=1))
X <- rbind(X, c(3.3,3), c(3.7,3))
n <- nrow(X)
Z <- X[,1] - (4-X[,2])^2 + rnorm(n,0,.1)
plot(X[,1], Z, col=X[,2])
tibble(X=X, Z) %>% arrange(X,Z)
k2a <- IgnoreIndsKernel$new(k=Gaussian$new(D=1), ignoreinds = 2)
k2b <- OrderedFactorKernel$new(D=2, nlevels=3, xind=2)
k2 <- k2a * k2b
k2b$p_upper <- .65*k2b$p_upper
gp <- GauPro_kernel_model$new(X=X, Z=Z, kernel = k2, verbose = 5,
nug.min=1e-2, restarts=0)
gp$kernel$k1$kernel$beta
gp$kernel$k2$p
gp$kernel$k(x = gp$X)
tibble(X=X, Z=Z, pred=gp$predict(X)) %>% arrange(X, Z)
tibble(X=X[,2], Z) %>% group_by(X) %>% summarize(n=n(), mean(Z))
curve(gp$pred(cbind(matrix(x,ncol=1),1)),2,6, ylim=c(min(Z), max(Z)))
points(X[X[,2]==1,1], Z[X[,2]==1])
curve(gp$pred(cbind(matrix(x,ncol=1),2)), add=TRUE, col=2)
points(X[X[,2]==2,1], Z[X[,2]==2], col=2)
curve(gp$pred(cbind(matrix(x,ncol=1),3)), add=TRUE, col=3)
points(X[X[,2]==3,1], Z[X[,2]==3], col=3)
legend(legend=1:3, fill=1:3, x="topleft")
# See which points affect (5.5, 3 themost)
data.frame(X, cov=gp$kernel$k(X, c(5.5,3))) %>% arrange(-cov)
plot(k2b)