gammahetero2 {Gammareg} | R Documentation |
Classic gamma regression. Identity link for the mean
Description
Performs the Classic Gamma Regression for joint modeling of mean and shape parameters.
Usage
gammahetero2(formula1, formula2)
Arguments
formula1 |
object of class formula. It describes yi and xi for the mean equation of the gamma regression. |
formula2 |
object of class formula. It describes zi for the shape equation of the gamma regression. |
Details
The classic gamma regression allow the joint modeling of mean and shape parameters of a gamma distributed variable, as is proposed in Cepeda (2001), using the Fisher Scoring algorithm, with log link for the mean and log link for the shape.
Value
object of class Gammareg
with the following:
X |
object of class matrix, with the variables for modelling the mean. |
Z |
object of class matrix, with the variables for modelling the shape. |
beta |
object of class matrix with the estimated coefficients of beta. |
gamma |
object of class matrix with the estimated coefficients of gamma. |
ICB |
object of class matrix with the estimated confidence intervals of beta. |
ICG |
object of class matrix with the estimated confidence intervals of gamma. |
CovarianceMatrixbeta |
object of class matrix with the estimated covariances of beta. |
CovarianceMatrixgamma |
object of class matrix with the estimated covariances of gamma. |
AIC |
the AIC criteria |
iteration |
numbers of iterations to convergence |
convergence |
value of convergence obtained |
Author(s)
Martha Corrales martha.corrales@usa.edu.co Edilberto Cepeda-Cuervo ecepedac@unal.edu.co,
References
1. Cepeda-Cuervo, E. (2001). Modelagem da variabilidade em modelos lineares generalizados. Unpublished Ph.D. tesis. Instituto de Matemáticas. Universidade Federal do Río do Janeiro. //http://www.docentes.unal.edu.co/ecepedac/docs/MODELAGEM20DA20VARIABILIDADE.pdf. http://www.bdigital.unal.edu.co/9394/. 2. McCullagh, P. and Nelder, N.A. (1989). Generalized Linear Models. Second Edition. Chapman and Hall.
Examples
# Simulation Example
X1 <- rep(1,500)
X2 <- runif(500,0,30)
X3 <- runif(500,0,15)
X4 <- runif(500,10,20)
mui <- 15 + 2*X2 + 3*X3
alphai <- exp(0.2 + 0.1*X2 + 0.3*X4)
Y <- rgamma(500,shape=alphai,scale=mui/alphai)
X <- cbind(X1,X2,X3)
Z <- cbind(X1,X2,X4)
formula.mean= Y~X2+X3
formula.shape= ~X2+X4
a=gammahetero2(formula.mean,formula.shape)
a