bw.gtwr {GWmodel} | R Documentation |
Bandwidth selection for GTWR
Description
A function for automatic bandwidth selection to calibrate a GTWR model
Usage
bw.gtwr(formula, data, obs.tv, approach="CV",kernel="bisquare",adaptive=FALSE,
p=2, theta=0, longlat=F,lamda=0.05,t.units = "auto",ksi=0, st.dMat,
verbose=T)
Arguments
formula |
Regression model formula of a formula object |
data |
a Spatial*DataFrame, i.e. SpatialPointsDataFrame or SpatialPolygonsDataFrame as defined in package sp |
obs.tv |
a vector of time tags for each observation, which could be numeric or of POSIXlt class |
approach |
specified by CV for cross-validation approach or by AIC corrected (AICc) approach |
kernel |
function chosen as follows: gaussian: wgt = exp(-.5*(vdist/bw)^2); exponential: wgt = exp(-vdist/bw); bisquare: wgt = (1-(vdist/bw)^2)^2 if vdist < bw, wgt=0 otherwise; tricube: wgt = (1-(vdist/bw)^3)^3 if vdist < bw, wgt=0 otherwise; boxcar: wgt=1 if dist < bw, wgt=0 otherwise |
adaptive |
if TRUE calculate an adaptive kernel where the bandwidth (bw) corresponds to the number of nearest neighbours (i.e. adaptive distance); default is FALSE, where a fixed kernel is found (bandwidth is a fixed distance) |
p |
the power of the Minkowski distance, default is 2, i.e. the Euclidean distance |
theta |
an angle in radians to rotate the coordinate system, default is 0 |
longlat |
if TRUE, great circle distances will be calculated |
lamda |
an parameter between 0 and 1 for calculating spatio-temporal distance |
t.units |
character string to define time unit |
ksi |
an parameter between 0 and PI for calculating spatio-temporal distance, see details in Wu et al. (2014) |
st.dMat |
a pre-specified spatio-temporal distance matrix |
verbose |
logical variable to define whether show the selection procedure |
Value
Returns the adaptive or fixed distance bandwidth
Note
The function is developed according to the articles by Huang et al. (2010) and Wu et al. (2014).
Author(s)
Binbin Lu binbinlu@whu.edu.cn
References
Huang, B., Wu, B., & Barry, M. (2010). Geographically and temporally weighted regression for modeling spatio-temporal variation in house prices. International Journal of Geographical Information Science, 24, 383-401.
Wu, B., Li, R., & Huang, B. (2014). A geographically and temporally weighted autoregressive model with application to housing prices. International Journal of Geographical Information Science, 28, 1186-1204.
Fotheringham, A. S., Crespo, R., & Yao, J. (2015). Geographical and Temporal Weighted Regression (GTWR). Geographical Analysis, 47, 431-452.