fit.GWex.prec {GWEX} | R Documentation |
fit.GWex.prec
Description
estimate all the parameters for the G-Wex model of precipitation
Usage
fit.GWex.prec(objGwexObs, parMargin, listOption = NULL)
Arguments
objGwexObs |
object of class |
parMargin |
if not NULL, list where each element parMargin[[iM]] corresponds to a month iM=1...12 and contains a matrix nStation x 3 of estimated parameters of the marginal distributions (EGPD or mixture of exponentials) |
listOption |
list with the following fields:
|
Value
a list containing the list of options listOption
and the list of estimated parameters listPar
.
The parameters of the occurrence process are contained in parOcc
and the parameters related to the precipitation
amounts are contained in parInt
. Each type of parameter is a list containing the estimates for each month. In parOcc
, we find:
-
p01: For each station, the probability of transition from a dry state to a wet state.
-
p11: For each station, the probability of staying in a wet state.
-
list.pr.state: For each station, the probabilities of transitions for a Markov chain with lag
p
. -
list.mat.omega: The spatial correlation matrix of occurrences
\Omega
(see Evin et al., 2018).
In parInt
, we have:
-
parMargin: list of matrices nStation x nPar of parameters for the marginal distributions (one element per Class).
-
cor.int: Matrices nStation x nStation
M_0
,A
,\Omega_Z
representing the spatial and temporal correlations between all the stations (see Evin et al., 2018). For the Student copula,dfStudent
indicates the\nu
parameter.
Author(s)
Guillaume Evin
References
Evin, G., A.-C. Favre, and B. Hingray. 2018. 'Stochastic Generation of Multi-Site Daily Precipitation Focusing on Extreme Events.' Hydrol. Earth Syst. Sci. 22 (1): 655-672. doi.org/10.5194/hess-22-655-2018.