dTPSC {GUD} | R Documentation |
The TPSC-Student-t Distribution
Description
The TPSC-Student-t Distribution
Usage
dTPSC(x, w, theta, sigma, delta)
rTPSC(n, w, theta, sigma, delta)
Arguments
x |
vector of quantiles. |
w |
vector of weight parameters. |
theta |
vector of the location parameters. |
sigma |
vector of the scale parameters. |
delta |
the degree of freedom. |
n |
number of observations. |
Details
The TPSC-Student-t distribution has the density
f_{\mathrm{TPSC}}(y \mid w, \theta, \sigma, \delta)=w f_{\mathrm{LT}}\left(y \mid \theta, \sigma \sqrt{\frac{w}{1-w}}, \delta\right)+(1-w) f_{\mathrm{RT}}\left(y \mid \theta, \sigma \sqrt{\frac{1-w}{w}}, \delta\right),
where
f_{\mathrm{LT}}(y \mid \theta, \sigma, \delta)=\frac{2}{\sigma} f\left(\left.\frac{y-\theta}{\sigma} \right\rvert\, \delta\right) \mathbb{I}(y<\theta),
and
f_{\mathrm{RT}}(y \mid \theta, \sigma, \delta)=\frac{2}{\sigma} f\left(\left.\frac{y-\theta}{\sigma} \right\rvert\, \delta\right) \mathbb{I}(y \geq \theta).
Additionally, f(y \mid \delta)
represents the density function of the standardized Student-t distribution with the degree of freedom \delta
.
Value
dTPSC
gives the density. rTPSC
generates random deviates.
References
Liu Q, Huang X, Bai R (2024). “Bayesian Modal Regression Based on Mixture Distributions.” Computational Statistics & Data Analysis, 108012. doi:10.1016/j.csda.2024.108012.
Examples
set.seed(100)
require(graphics)
# Random Number Generation
X <- rTPSC(n = 1e5,w = 0.7,theta = -1,sigma = 3,delta = 5)
# Plot the histogram
hist(X, breaks = 100, freq = FALSE)
# The red dashed line should match the underlining histogram
points(x = seq(-70,50,length.out = 1000),
y = dTPSC(x = seq(-70,50,length.out = 1000),
w = 0.7,theta = -1,sigma = 3,delta = 5),
type = "l",
col = "red",
lwd = 3,
lty = 2)