| Sieve_NPMLE_Bootstrap {GSSE} | R Documentation | 
Sieve_NPMLE_Bootstrap function
Description
This function is used for calculating standard error estimates and 95% confidence bands in quantile using the bootstrap method.
Usage
Sieve_NPMLE_Bootstrap ( fam_ID, Y0, Delta0, p0G0, fix_t1, fix_t2,
                        Grid, Knot, degree=3, Bn, maxiter=400, ep=1e-05)
Arguments
| fam_ID | family ID numbers. | 
| Y0 | observed event times or censoring times. | 
| Delta0 | indicators of event. | 
| p0G0 | probabilities of being a carrier. | 
| fix_t1 | a vector of fixed points at which the carrier's cumulative distribution function values are estimated. | 
| fix_t2 | a vector of fixed points at which the non-carrier's cumulative distribution function values are estimated. | 
| Grid | a vector of grid points used for plotting the estimated distribution functions of carrier and non-carrier groups. | 
| Knot | number of knots of the B-spline base functions. | 
| degree | degree of the B-spline base functions. | 
| Bn | number of bootstrap samples. | 
| maxiter | maximum number of iterations. | 
| ep | convergence criterion, default is ep= 1e-05. | 
Details
Using bootstrap for standard error estimation and 95% confidence bands calculation. We do the Bootstrap resample according to fam_ID. 
Value
This function returns a list
| Boot.L1 | estimated cumulative hazard function for the carrier group. | 
| Boot.L2 | estimated cumulative hazard function for the non-carrier group. | 
| SE_F1_fix_t | estimated standard errors for the carrier group at given points  | 
| SE_F2_fix_t | estimated standard errors for the non-carrier group at given points  | 
References
Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. Biometrika, 102(3), 515-532.
See Also
p0G_Func(), Sieve_NPMLE_Switch(). 
Examples
data("Simulated_data");
OID = Simulated_data[,1];
OY = Simulated_data[,2];
ind = order(OY);
ODelta = Simulated_data[,3];
Op0G = Simulated_data[,4];
Y = OY[ind];
Delta = ODelta[ind];
p0G = Op0G[ind];
Grid = seq(0.2, 3.65, 0.05);
fix_t1 = c(0.288, 0.693, 1.390);
fix_t2 = c(0.779, 1.860, 3.650);
px = seq(0.1, 3, 0.1);
SieveNPMLE_result = Sieve_NPMLE_Switch( Y=Y, Delta=Delta, p0G=p0G, px=px,
                                        Grid=Grid, Knot=7, degree=3  );
Lambda_1.hat = cumsum( SieveNPMLE_result$lamb1.hat );
Lambda_2.hat = cumsum( SieveNPMLE_result$lamb2.hat );
F_carr_func = function(x){ 1 - exp( - max( Lambda_1.hat[Y <= x] ) ) }
F_non_func  = function(x){ 1 - exp( - max( Lambda_2.hat[Y <= x] ) ) }
est.f1 = apply(matrix(fix_t1, ncol=1), 1, F_carr_func );
est.f2 = apply(matrix(fix_t2, ncol=1), 1, F_non_func  );
# ---------------- #
#    Bootstrap     #
# ---------------- #
 Boot = Sieve_NPMLE_Bootstrap( fam_ID=OID, Y0=OY, Delta0=ODelta, p0G0=Op0G,
                               fix_t1=fix_t1, fix_t2=fix_t2, Grid = Grid,
                               Knot=6, degree =3, Bn=10  );
 SE1 = Boot$SE_F1_fix_t;
 SE2 = Boot$SE_F2_fix_t;
 estp = data.frame( fix_t1 = fix_t1, F1.hat = est.f1, SE_F1 = SE1,
                    fix_t2 = fix_t2, F2.hat = est.f2, SE_F2 = SE2  );
 print(estp)