Permutation_Test {GSSE} | R Documentation |
Permutation Test
Description
Permutation test for the Sieve-NPMLE switch method with null hypothesis H_0
: F_carr = F_non and alternative hypothesis H_1
: F_carr is not equal to F_non.
Usage
Permutation_Test (Grid, F_carr, F_non, OY, ODelta, Op0G, nperm)
Arguments
Grid |
time points at which the distribution function values are estimated. |
F_carr |
a vector of distribution function values at given grid points of the carrier group. |
F_non |
a vector of distribution function values at given grid points of the non-carrier group. |
OY |
observed event times. |
ODelta |
observed indicators of right censoring. |
Op0G |
observed probability values of carrier and non-carrier groups. |
nperm |
replication number used in permutation. |
Details
Technical details can be found in Wang et al. (2015).
Value
This function returns a list of prediction values for classes,
Test_Stat |
value of the Kolmogorov-Smirnov statistic with observed data. |
Pvalues |
p-value of the permutation test. |
Permutation.value |
values of Kolmogorov-Smirnov statistics under all permutations. |
References
Wang, Y., Liang, B., Tong, X., Marder, K., Bressman, S., Orr-Urtreger, A., Giladi, N. & Zeng, D. (2015). Efficient estimation of nonparametric genetic risk function with censored data. Biometrika, 102(3), 515-532.
See Also
test_stat()
and Sieve_NPMLE_Switch()
.
Examples
data("Simulated_data");
OY = Simulated_data[,2];
ind = order(OY);
ODelta = Simulated_data[,3];
Op0G = Simulated_data[,4];
Y = OY[ind];
Delta = ODelta[ind];
p0G = Op0G[ind];
Grid = seq(0.2, 3.65, 0.05);
fix_t1 = c(0.288, 0.693, 1.390);
fix_t2 = c(0.779, 1.860, 3.650);
px = seq(0.1, 3, 0.1);
SieveNPMLE_result = Sieve_NPMLE_Switch( Y=Y, Delta=Delta, p0G=p0G,
px=px, Grid=Grid, Knot=7,
degree=3 );
Lambda_1.hat = cumsum( SieveNPMLE_result$lamb1.hat );
Lambda_2.hat = cumsum( SieveNPMLE_result$lamb2.hat );
F_carr_func = function(x){ 1 - exp( max( Lambda_1.hat[Y <= x] ) ) }
F_non_func = function(x){ 1 - exp( max( Lambda_2.hat[Y <= x] ) ) }
F_carr = apply( matrix(px, ncol=1), 1, F_carr_func );
F_non = apply( matrix(px, ncol=1), 1, F_non_func );
# Permutation test #
Permutation_Test( Grid=Grid, F_carr=F_carr, F_non=F_non,
OY=OY, ODelta=ODelta, Op0G=Op0G,
nperm=10 );