grnn {GRNNs} | R Documentation |
General Regression Neural Networks (GRNNs)
Description
This GRNNs uses various distance functions including: "euclidean", "minkowski", "manhattan", "maximum", "canberra", "angular", "correlation", "absolute_correlation", "hamming", "jaccard","bray", "kulczynski", "gower", "altGower", "morisita", "horn", "mountford", "raup", "binomial", "chao", "cao","mahalanobis".
Usage
grnn(p_input, p_train, v_train, fun = "euclidean", best.spread, scale = TRUE)
Arguments
p_input |
The dataframe of input predictors |
p_train |
The dataframe of training predictor dataset |
v_train |
The dataframe of training response variables |
fun |
The distance function |
best.spread |
The vector of best spreads |
scale |
The logic statements (TRUE/FALSE) |
Value
The predictions
Examples
data("met")
data("physg")
best.spread<-c(0.33,0.33,0.31,0.34,0.35,0.35,0.32,0.31,0.29,0.35,0.35)
predict<-physg[1,]
physg.train<-physg[-1,]
met.train<-met[-1,]
prediction<-grnn(predict,physg.train,met.train,fun="euclidean",best.spread,scale=TRUE)
[Package GRNNs version 0.1.0 Index]