predict {GPfit} | R Documentation |
Model Predictions from GPfit
Description
Computes the regularized predicted response \hat{y}_{\delta_{lb},M}(x)
and the mean squared error s^2_{\delta_{lb},M}(x)
for a new set of
inputs using the fitted GP model.
The value of M
determines the number of iterations (or terms) in
approximating R^{-1} \approx R^{-1}_{\delta_{lb},M}
. The iterative use
of the nugget \delta_{lb}
, as outlined in Ranjan et al. (2011), is
used in calculating \hat{y}_{\delta_{lb},M}(x)
and
s^2_{\delta_{lb},M}(x)
, where R_{\delta,M}^{-1} = \sum_{t =
1}^{M} \delta^{t - 1}(R+\delta I)^{-t}
.
Usage
## S3 method for class 'GP'
predict(object, xnew = object$X, M = 1, ...)
## S3 method for class 'GP'
fitted(object, ...)
Arguments
object |
a class |
xnew |
the ( |
M |
the number of iterations. See 'Details' |
... |
for compatibility with generic method |
Value
Returns a list containing the predicted values (Y_hat
), the
mean squared errors of the predictions (MSE
), and a matrix
(complete_data
) containing xnew
, Y_hat
, and MSE
Methods (by class)
-
GP
: Thepredict
method returns a list of elements Y_hat (fitted values), Y (dependent variable), MSE (residuals), and completed_data (the matrix of independent variables, Y_hat, and MSE). -
GP
: Thefitted
method extracts the complete data.
Author(s)
Blake MacDonald, Hugh Chipman, Pritam Ranjan
References
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
See Also
GP_fit
for estimating the parameters of the GP model;
plot
for plotting the predicted and error surfaces.
Examples
## 1D Example
n <- 5
d <- 1
computer_simulator <- function(x){
x <- 2*x+0.5
sin(10*pi*x)/(2*x) + (x-1)^4
}
set.seed(3)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
xvec <- seq(from = 0, to = 1, length.out = 10)
GPmodel <- GP_fit(x, y)
head(fitted(GPmodel))
lapply(predict(GPmodel, xvec), head)
## 1D Example 2
n <- 7
d <- 1
computer_simulator <- function(x) {
log(x+0.1)+sin(5*pi*x)
}
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
xvec <- seq(from = 0,to = 1, length.out = 10)
GPmodel <- GP_fit(x, y)
head(fitted(GPmodel))
predict(GPmodel, xvec)
## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
x1 <- 4*x[,1] - 2
x2 <- 4*x[,2] - 2
t1 <- 1 + (x1 + x2 + 1)^2*(19 - 14*x1 + 3*x1^2 - 14*x2 +
6*x1*x2 + 3*x2^2)
t2 <- 30 + (2*x1 -3*x2)^2*(18 - 32*x1 + 12*x1^2 + 48*x2 -
36*x1*x2 + 27*x2^2)
y <- t1*t2
return(y)
}
n <- 10
d <- 2
set.seed(1)
library(lhs)
x <- maximinLHS(n,d)
y <- computer_simulator(x)
GPmodel <- GP_fit(x,y)
# fitted values
head(fitted(GPmodel))
# new data
xvector <- seq(from = 0,to = 1, length.out = 10)
xdf <- expand.grid(x = xvector, y = xvector)
predict(GPmodel, xdf)