GP_fit {GPfit} | R Documentation |
Gaussian Process Model fitting
Description
For an (n x d) design matrix, X
,
and the corresponding (n x 1) simulator output Y
,
this function fits the GP model and returns the parameter estimates.
The optimization routine assumes that
the inputs are scaled to the unit hypercube [0,1]^d
.
Usage
GP_fit(X, Y, control = c(200 * d, 80 * d, 2 * d), nug_thres = 20,
trace = FALSE, maxit = 100, corr = list(type = "exponential", power
= 1.95), optim_start = NULL)
Arguments
X |
the ( |
Y |
the ( |
control |
a vector of parameters used in the search for optimal beta (search grid size, percent, number of clusters). See ‘Details’. |
nug_thres |
a parameter used in computing the nugget. See ‘Details’. |
trace |
logical, if |
maxit |
the maximum number of iterations within |
corr |
a list of parameters for the specifing the correlation to be
used. See |
optim_start |
a matrix of potentially likely starting values for
correlation hyperparameters for the |
Details
This function fits the following GP model,
y(x) = \mu + Z(x)
,
x \in [0,1]^{d}
, where Z(x)
is
a GP with mean 0, Var(Z(x_i)) = \sigma^2
, and
Cov(Z(x_i),Z(x_j)) = \sigma^2R_{ij}
. Entries in covariance matrix R are determined by
corr
and parameterized by beta
, a d
-vector of
parameters. For computational stability R^{-1}
is replaced with
R_{\delta_{lb}}^{-1}
, where R_{\delta{lb}} = R + \delta_{lb}I
and \delta_{lb}
is the nugget parameter described in Ranjan et al.
(2011).
The parameter estimate beta
is obtained by minimizing
the deviance using a multi-start gradient based search (L-BFGS-B)
algorithm. The starting points are selected using the k-means
clustering algorithm on a large maximin LHD for values of
beta
, after discarding beta
vectors
with high deviance. The control
parameter determines the
quality of the starting points of the L-BFGS-B algoritm.
control
is a vector of three tunable parameters used
in the deviance optimization algorithm. The default values
correspond to choosing 2*d clusters (using k-means clustering
algorithm) based on 80*d best points (smallest deviance,
refer to GP_deviance
) from a 200*d - point
random maximin LHD in beta
. One can change these values
to balance the trade-off between computational cost and robustness
of likelihood optimization (or prediction accuracy).
For details see MacDonald et al. (2015).
The nug_thres
parameter is outlined in Ranjan et al. (2011) and is
used in finding the lower bound on the nugget
(\delta_{lb}
).
Value
an object of class GP
containing parameter estimates
beta
and sig2
, nugget parameter delta
, the data
(X
and Y
), and a specification of the correlation structure
used.
Author(s)
Blake MacDonald, Hugh Chipman, Pritam Ranjan
References
MacDonald, K.B., Ranjan, P. and Chipman, H. (2015). GPfit: An R
Package for Fitting a Gaussian Process Model to Deterministic Simulator
Outputs. Journal of Statistical Software, 64(12), 1-23.
http://www.jstatsoft.org/v64/i12/
Ranjan, P., Haynes, R., and Karsten, R. (2011). A Computationally Stable Approach to Gaussian Process Interpolation of Deterministic Computer Simulation Data, Technometrics, 53(4), 366 - 378.
See Also
plot
for plotting in 1 and 2 dimensions;
predict
for predicting the response and error surfaces;
optim
for information on the L-BFGS-B procedure;
GP_deviance
for computing the deviance.
Examples
## 1D Example 1
n = 5
d = 1
computer_simulator <- function(x){
x = 2 * x + 0.5
y = sin(10 * pi * x) / (2 * x) + (x - 1)^4
return(y)
}
set.seed(3)
library(lhs)
x = maximinLHS(n, d)
y = computer_simulator(x)
GPmodel = GP_fit(x, y)
print(GPmodel)
## 1D Example 2
n = 7
d = 1
computer_simulator <- function(x) {
y <- log(x + 0.1) + sin(5 * pi * x)
return(y)
}
set.seed(1)
library(lhs)
x = maximinLHS(n, d)
y = computer_simulator(x)
GPmodel = GP_fit(x, y)
print(GPmodel, digits = 4)
## 2D Example: GoldPrice Function
computer_simulator <- function(x) {
x1 = 4 * x[, 1] - 2
x2 = 4 * x[, 2] - 2
t1 = 1 + (x1 + x2 + 1)^2 * (19 - 14 * x1 + 3 * x1^2 - 14 * x2 +
6 * x1 *x2 + 3 * x2^2)
t2 = 30 + (2 * x1 - 3 * x2)^2 * (18 - 32 * x1 + 12 * x1^2 + 48 * x2 -
36 * x1 * x2 + 27 * x2^2)
y = t1 * t2
return(y)
}
n = 30
d = 2
set.seed(1)
library(lhs)
x = maximinLHS(n, d)
y = computer_simulator(x)
GPmodel = GP_fit(x, y)
print(GPmodel)