plot_uncertainty {GPareto} | R Documentation |
Plot uncertainty
Description
Displays the probability of non-domination in the variable space. In dimension larger than two, projections in 2D subspaces are displayed.
Usage
plot_uncertainty(
model,
paretoFront = NULL,
type = "pn",
lower,
upper,
resolution = 51,
option = "mean",
nintegpoints = 400
)
Arguments
model |
list of objects of class |
paretoFront |
(optional) matrix corresponding to the Pareto front of size |
type |
type of uncertainty, for now only the probability of improvement over the Pareto front, |
lower |
vector of lower bounds for the variables, |
upper |
vector of upper bounds for the variables, |
resolution |
grid size (the total number of points is |
option |
optional argument (string) for n > 2 variables to define the projection type. The 3 possible values are "mean" (default), "max" and "min", |
nintegpoints |
number of integration points for computation of mean, max and min values. |
Details
Function inspired by the function print_uncertainty
and
print_uncertainty_nd
from the package KrigInv-package
.
Non-dominated observations are represented with green diamonds, dominated ones by yellow triangles.
Examples
## Not run:
#---------------------------------------------------------------------------
# 2D, bi-objective function
#---------------------------------------------------------------------------
set.seed(25468)
n_var <- 2
fname <- P1
lower <- rep(0, n_var)
upper <- rep(1, n_var)
res1 <- easyGParetoptim(fn=fname, lower=lower, upper=upper, budget=15,
control=list(method="EHI", inneroptim="pso", maxit=20))
plot_uncertainty(res1$model, lower = lower, upper = upper)
#---------------------------------------------------------------------------
# 4D, bi-objective function
#---------------------------------------------------------------------------
set.seed(25468)
n_var <- 4
fname <- DTLZ2
lower <- rep(0, n_var)
upper <- rep(1, n_var)
res <- easyGParetoptim(fn=fname, lower=lower, upper=upper, budget = 40,
control=list(method="EHI", inneroptim="pso", maxit=40))
plot_uncertainty(res$model, lower = lower, upper = upper, resolution = 31)
## End(Not run)