plotGPareto {GPareto} | R Documentation |
Plot multi-objective optimization results and post-processing
Description
Display results of multi-objective optimization returned by either GParetoptim
or easyGParetoptim
,
possibly completed with various post-processings of uncertainty quantification.
Usage
plotGPareto(
res,
add = FALSE,
UQ_PF = FALSE,
UQ_PS = FALSE,
UQ_dens = FALSE,
lower = NULL,
upper = NULL,
control = list(pch = 20, col = "red", PF.line.col = "cyan", PF.pch = 17, PF.points.col
= "blue", VE.line.col = "cyan", nsim = 100, npsim = 1500, gridtype = "runif",
displaytype = "persp", printVD = TRUE, use.rgl = TRUE, bounds = NULL, meshsize3d =
50, theta = -25, phi = 10, add_denoised_PF = TRUE)
)
Arguments
res |
list returned by |
add |
logical; if |
UQ_PF |
logical; for 2 objectives, if |
UQ_PS |
logical; if |
UQ_dens |
logical; for 2D problems, if |
lower |
optional vector of lower bounds for the variables.
Necessary if |
upper |
optional vector of upper bounds for the variables.
Necessary if |
control |
optional list, see details. |
Details
By default, plotGPareto
displays the Pareto front delimiting the non-dominated area with 2 objectives,
by a perspective view with 3 objectives and using parallel coordinates with more objectives.
Setting one or several of UQ_PF, UQ_PS and UQ_dens allows to run and display post-processing tools that assess
the precision and confidence of the optimization run, either in the objective (UQ_PF
) or the variable spaces
(UQ_PS
, UQ_dens
). Note that these options are computationally intensive.
Various parameters can be used for the display of results and/or passed to subsequent function:
-
col
,pch
correspond the color and plotting character for observations, -
PF.line.col
,PF.pch
,PF.points.col
define the color of the line denoting the current Pareto front, the plotting character and color of non-dominated observations, respectively, -
nsim
,npsim
andgridtype
define the number of conditional simulations performed with [DiceKriging::simulate()] along with the number of simulation points (in caseUQ_PF
and/orUQ_dens
areTRUE
), -
gridtype
to define how simulation points are selected; alternatives are 'runif
' (default) for uniformly sampled points, 'LHS
' for a Latin Hypercube design usinglhsDesign
and 'grid2d
' for a two dimensional grid, -
f1lim
,f2lim
can be passed toCPF
, -
resolution
,option
,nintegpoints
are to be passed toplot_uncertainty
-
displaytype
type of display forUQ_dens
, seeplot.kde
, -
printVD
logical, ifTRUE
andUQ_PF
isTRUE
as well, print the value of the Vorob'ev deviation, -
use.rgl
ifTRUE
, use rgl for 3D plots, elsepersp
is used, -
bounds
ifuse.rgl
isTRUE
, optional2*nobj
matrix of boundaries, seeplotParetoEmp
-
meshsize3d
mesh size of the perspective view for 3-objective problems, -
theta
,phi
angles for perspective view of 3-objective problems, -
add_denoised_PF
ifTRUE
, in the noisy case, add the Pareto front from the estimated mean of the observations.
References
M. Binois, D. Ginsbourger and O. Roustant (2015), Quantifying Uncertainty on Pareto Fronts with Gaussian process conditional simulations,
European Journal of Operational Research, 243(2), 386-394.
A. Inselberg (2009), Parallel coordinates, Springer.
Examples
## Not run:
#---------------------------------------------------------------------------
# 2D objective function
#---------------------------------------------------------------------------
set.seed(25468)
n_var <- 2
fname <- P1
lower <- rep(0, n_var)
upper <- rep(1, n_var)
res <- easyGParetoptim(fn=fname, lower=lower, upper=upper, budget=15,
control=list(method="EHI", inneroptim="pso", maxit=20))
## Pareto front only
plotGPareto(res)
## With post-processing
plotGPareto(res, UQ_PF = TRUE, UQ_PS = TRUE, UQ_dens = TRUE)
## With noise
noise.var <- c(10, 2)
funnoise <- function(x) {P1(x) + sqrt(noise.var)*rnorm(n=2)}
res2 <- easyGParetoptim(fn=funnoise, lower=lower, upper=upper, budget=15, noise.var=noise.var,
control=list(method="EHI", inneroptim="pso", maxit=20))
plotGPareto(res2, control=list(add_denoised_PF=FALSE)) # noisy observations only
plotGPareto(res2)
#---------------------------------------------------------------------------
# 3D objective function
#---------------------------------------------------------------------------
set.seed(1)
n_var <- 3
fname <- DTLZ1
lower <- rep(0, n_var)
upper <- rep(1, n_var)
res3 <- easyGParetoptim(fn=fname, lower=lower, upper=upper, budget=50,
control=list(method="EHI", inneroptim="pso", maxit=20))
## Pareto front only
plotGPareto(res3)
## With noise
noise.var <- c(10, 2, 5)
funnoise <- function(x) {fname(x) + sqrt(noise.var)*rnorm(n=3)}
res4 <- easyGParetoptim(fn=funnoise, lower=lower, upper=upper, budget=100, noise.var=noise.var,
control=list(method="EHI", inneroptim="pso", maxit=20))
plotGPareto(res4, control=list(add_denoised_PF=FALSE)) # noisy observations only
plotGPareto(res4)
## End(Not run)