| crit_SMS {GPareto} | R Documentation | 
Analytical expression of the SMS-EGO criterion with m>1 objectives
Description
Computes a slightly modified infill Criterion of the SMS-EGO. To avoid numerical instabilities, an additional penalty is added to the new point if it is too close to an existing observation.
Usage
crit_SMS(x, model, paretoFront = NULL, critcontrol = NULL, type = "UK")
Arguments
| x | a vector representing the input for which one wishes to calculate the criterion, | 
| model | a list of objects of class  | 
| paretoFront | (optional) matrix corresponding to the Pareto front of size  | 
| critcontrol | list with arguments: 
 Options for the  | 
| type | " | 
Value
Value of the criterion.
References
W. Ponweiser, T. Wagner, D. Biermann, M. Vincze (2008), Multiobjective Optimization on a Limited Budget of Evaluations Using Model-Assisted S-Metric Selection,
Parallel Problem Solving from Nature, pp. 784-794. Springer, Berlin. 
 
T. Wagner, M. Emmerich, A. Deutz, W. Ponweiser (2010), On expected-improvement criteria for model-based multi-objective optimization.   
Parallel Problem Solving from Nature, pp. 718-727. Springer, Berlin.
See Also
Examples
#---------------------------------------------------------------------------
# SMS-EGO surface associated with the "P1" problem at a 15 points design
#---------------------------------------------------------------------------
set.seed(25468)
library(DiceDesign)
n_var <- 2 
f_name <- "P1" 
n.grid <- 26
test.grid <- expand.grid(seq(0, 1, length.out = n.grid), seq(0, 1, length.out = n.grid))
n_appr <- 15 
design.grid <- round(maximinESE_LHS(lhsDesign(n_appr, n_var, seed = 42)$design)$design, 1)
response.grid <- t(apply(design.grid, 1, f_name))
PF <- t(nondominated_points(t(response.grid)))
mf1 <- km(~., design = design.grid, response = response.grid[,1])
mf2 <- km(~., design = design.grid, response = response.grid[,2])
model <- list(mf1, mf2)
critcontrol <- list(refPoint = c(300, 0), currentHV = dominated_hypervolume(t(PF), c(300, 0)))
SMSEGO_grid <- apply(test.grid, 1, crit_SMS, model = model,
                     paretoFront = PF, critcontrol = critcontrol)
filled.contour(seq(0, 1, length.out = n.grid), seq(0, 1, length.out = n.grid),
               matrix(pmax(0, SMSEGO_grid), nrow = n.grid), nlevels = 50,
               main = "SMS-EGO criterion (positive part)", xlab = expression(x[1]),
               ylab = expression(x[2]), color = terrain.colors,
               plot.axes = {axis(1); axis(2);
                            points(design.grid[,1],design.grid[,2], pch = 21, bg = "white")
                            }
              )