checkPredict {GPareto} | R Documentation |
Prevention of numerical instability for a new observation
Description
Check that the new point is not too close to already known observations to avoid numerical issues. Closeness can be estimated with several distances.
Usage
checkPredict(x, model, threshold = 1e-04, distance = "euclidean", type = "UK")
Arguments
x |
a vector representing the input to check, alternatively a matrix with one point per row, |
model |
list of objects of class |
threshold |
optional value for the minimal distance to an existing observation, default to |
distance |
selection of the distance between new observations, between " |
type |
" |
Details
If the distance between x
and the closest observations in model
is below
threshold
, x
should not be evaluated to avoid numerical instabilities.
The distance can simply be the Euclidean distance or the canonical distance associated with the kriging predictive covariance k:
d(x,y) = \sqrt{k(x,x) - 2k(x,y) + k(y,y)}.
The last solution is the ratio between the prediction variance at x
and the variance of the process.
none
can be used, e.g., if points have been selected already.
Value
TRUE
if the point should not be tested.