| matrix_decomposition {GPUmatrix} | R Documentation | 
Decomposition of a matrix with GPU
Description
These functions mimic the functions eigen ,svd,chol to operate on gpu.matrix-class objects:
'eigen' mimics the base function 'eigen' that "computes the eigenvalues and eigenvectors of a numeric (double, integer, logical) or complex matrix."
'svd' mimics the base function 'svd' that "computes the singular-value decomposition of a rectangular matrix."
'chol' mimics the base function 'chol' that "computes Compute the Cholesky factorization of a real symmetric positive-definite square matrix."
Usage
## S4 method for signature 'gpu.matrix.tensorflow'
eigen(x)
## S4 method for signature 'gpu.matrix.torch'
eigen(x)
## S4 method for signature 'gpu.matrix.tensorflow'
svd(x)
## S4 method for signature 'gpu.matrix.torch'
svd(x)
## S4 method for signature 'gpu.matrix.tensorflow'
chol(x)
## S4 method for signature 'gpu.matrix.torch'
chol(x)
Arguments
| x | a  | 
Details
These functions mimic the behaviour of their respective 'base' functions.
In the case of the eigen function, the input value can be a numeric or complex gpu.matrix class.
For svd function, the input value could be a numeric or complex gpu.matrix-class object.
For chol function, the input must be a positive-definite squere matrix.
Internally, these functions call its corresponding function of the tensorflow or torch library depending on the type of input gpu.matrix-class.
If the input gpu.matrix-class object(s) are stored on the GPU, then the operations will be performed on the GPU. See gpu.matrix.
Value
The output of these functions correspond to their equivalent base functions:
eigen mimics the base function eigen that computes the eigenvalues and eigenvectors of a numeric (double, integer, logical) or complex matrix. It returns a list with the following items:
| values | a vector with the  | 
| vectors | the eigenvectors of  | 
svd mimics the base function svd that computes the singular-value decomposition of a rectangular matrix. It returns a list with the following items:
| d | a vector containing the singular values of  | 
| u | a matrix whose columns contain the left singular vectors of  | 
| v | a matrix whose columns contain the right singular vectors of  | 
chol mimics the base function chol that computes Compute the Cholesky factorization of a real symmetric positive-definite square matrix. It returns a gpu.matrix-class object with The upper triangular factor of the Cholesky decomposition, i.e., the matrix R such that R'R = X.
See Also
For more information see:
eigen, svd, chol, linalg_eig, torch_svd, and torch_cholesky.
chol function is called by the function chol_solve.
For the qr decomposition see qr.
Examples
## Not run: 
a <- gpu.matrix(rnorm(9),3,3)
ein <- eigen(a) #eigenvalues and eigenvectors
svd_return <- svd(a) #svd of gpu.matrix a
ata <- tcrossprod(a)
#ata is a real symmetric positive-definite square matrix.
chol(ata) #cholesky decomposition.
## End(Not run)