GPLTR-package | Fit a generalized partially linear tree-based regression model |
bag.aucoob | AUC on the Out Of Bag samples |
bagging.pltr | bagging pltr models |
best.tree.BIC.AIC | Prunning the Maximal tree |
best.tree.bootstrap | parametric bootstrap on a pltr model |
best.tree.CV | Prunning the Maximal tree |
best.tree.permute | permutation test on a pltr model |
burn | burn dataset |
data_pltr | gpltr data example |
GPLTR | Fit a generalized partially linear tree-based regression model |
nested.trees | compute the nested trees |
p.val.tree | Compute the p-value |
pltr.glm | Partially tree-based regression model function |
predict_bagg.pltr | prediction on new features |
predict_pltr | prediction |
tree2glm | tree to GLM |
tree2indicators | From a tree to indicators (or dummy variables) |
VIMPBAG | score of importance for variables |