crit_PNash {GPGame} | R Documentation |
Probability for a strategy of being a Nash Equilibrium
Description
Acquisition function for solving game problems based on the probability for a strategy of being a Nash Equilibrium.
The probability can be computed exactly using the mutivariate Gaussian CDF (mnormt
, pmvnorm
) or by Monte Carlo.
Usage
crit_PNash(
idx,
integcontrol,
type = "simu",
model,
ncores = 1,
control = list(nsim = 100, eps = 1e-06)
)
Arguments
idx |
is the index on the grid of the strategy evaluated |
integcontrol |
is a list containing: |
type |
' |
model |
is a list of nobj |
ncores |
|
control |
list with slots |
eps |
numerical jitter for stability |
Value
Probability of being a Nash equibrium corrsponding to idx
.
References
V. Picheny, M. Binois, A. Habbal (2016+), A Bayesian optimization approach to find Nash equilibria, https://arxiv.org/abs/1611.02440.
See Also
crit_SUR_Eq
for an alternative infill criterion
Examples
##############################################
# Example 1: 2 variables, 2 players, no filter
##############################################
library(DiceKriging)
set.seed(42)
# Define objective function (R^2 -> R^2)
fun <- function (x)
{
if (is.null(dim(x))) x <- matrix(x, nrow = 1)
b1 <- 15 * x[, 1] - 5
b2 <- 15 * x[, 2]
return(cbind((b2 - 5.1*(b1/(2*pi))^2 + 5/pi*b1 - 6)^2 + 10*((1 - 1/(8*pi)) * cos(b1) + 1),
-sqrt((10.5 - b1)*(b1 + 5.5)*(b2 + 0.5)) - 1/30*(b2 - 5.1*(b1/(2*pi))^2 - 6)^2-
1/3 * ((1 - 1/(8 * pi)) * cos(b1) + 1)))
}
# Grid definition
n.s <- rep(11, 2)
x.to.obj <- c(1,2)
gridtype <- 'cartesian'
integcontrol <- generate_integ_pts(n.s=n.s, d=2, nobj=2, x.to.obj = x.to.obj, gridtype=gridtype)
test.grid <- integcontrol$integ.pts
expanded.indices <- integcontrol$expanded.indices
n.init <- 11
design <- test.grid[sample.int(n=nrow(test.grid), size=n.init, replace=FALSE),]
response <- t(apply(design, 1, fun))
mf1 <- km(~., design = design, response = response[,1], lower=c(.1,.1))
mf2 <- km(~., design = design, response = response[,2], lower=c(.1,.1))
model <- list(mf1, mf2)
crit_sim <- crit_PNash(idx=1:nrow(test.grid), integcontrol=integcontrol,
type = "simu", model=model, control = list(nsim = 100))
crit_ex <- crit_PNash(idx=1:nrow(test.grid), integcontrol=integcontrol, type = "exact", model=model)
filled.contour(seq(0, 1, length.out = n.s[1]), seq(0, 1, length.out = n.s[2]), zlim = c(0, 0.7),
matrix(pmax(0, crit_sim), n.s[1], n.s[2]), main = "Pnash criterion (MC)",
xlab = expression(x[1]), ylab = expression(x[2]), color = terrain.colors,
plot.axes = {axis(1); axis(2);
points(design[,1], design[,2], pch = 21, bg = "white")
}
)
filled.contour(seq(0, 1, length.out = n.s[1]), seq(0, 1, length.out = n.s[2]), zlim = c(0, 0.7),
matrix(pmax(0, crit_ex), n.s[1], n.s[2]), main = "Pnash criterion (exact)",
xlab = expression(x[1]), ylab = expression(x[2]), color = terrain.colors,
plot.axes = {axis(1); axis(2);
points(design[,1], design[,2], pch = 21, bg = "white")
}
)