print.GPCMlasso {GPCMlasso} | R Documentation |
Print function for GPCMlasso
Description
Print function for a GPCMlasso
object. Prints parameters estimates for all model
components for the optimal model chosen by a specific criterion (by default BIC).
Usage
## S3 method for class 'GPCMlasso'
print(x, select = c("BIC", "AIC", "cAIC", "cv"), ...)
Arguments
x |
|
select |
Specifies which criterion to use for the optimal model, we recommend the default value "BIC". If cross-validation was performed, automatically the optimal model according to cross-validation is used. Only the parameter estimates from the chosen optimal model are printed. |
... |
Further print arguments. |
Author(s)
Gunther Schauberger
gunther.schauberger@tum.de
References
Schauberger, Gunther and Mair, Patrick (2019): A Regularization Approach for the Detection of Differential Item Functioning in Generalized Partial Credit Models, Behavior Research Methods, https://link.springer.com/article/10.3758/s13428-019-01224-2
See Also
Examples
data(tenseness_small)
## formula for simple model without covariates
form.0 <- as.formula(paste("cbind(",paste(colnames(tenseness_small)[1:5],collapse=","),")~0"))
######
## fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control= ctrl_GPCMlasso(cores=2))
rsm.0
## Not run:
## formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind(",paste(colnames(tenseness_small)[1:5],collapse=","),")~."))
######
## fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)
######
## fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)
## create binary data set
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2
######
## fit and cross-validate Rasch model
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)
## End(Not run)