predict.GPCMlasso {GPCMlasso} | R Documentation |
Predict function for GPCMlasso
Description
Predict function for a GPCMlasso
object.
Predictions can be linear predictors or probabilities separately for each person and each item.
Usage
## S3 method for class 'GPCMlasso'
predict(
object,
coefs = NULL,
newdata = NULL,
type = c("link", "response"),
...
)
Arguments
object |
|
coefs |
Optional vector of coefficients, can be filled with a specific
row from |
newdata |
List possibly containing slots Y, X, Z1 and Z2 to use new data for prediction. |
type |
Type "link" gives vectors of linear predictors for separate categories (of length $k_i-1$) and type "response" gives the respective probabilities (of length $k_i$). |
... |
Further predict arguments. |
Details
Results are lists of vectors with length equal to the number
of response categories $k_i$ in case of
probabilities (type="response"
) or
$k_i-1$ in case of linear predictors (type="link"
).
Author(s)
Gunther Schauberger
gunther@stat.uni-muenchen.de
See Also
Examples
data(tenseness_small)
## formula for simple model without covariates
form.0 <- as.formula(paste("cbind(",paste(colnames(tenseness_small)[1:5],collapse=","),")~0"))
######
## fit simple RSM where loglikelihood and score function are evaluated parallel on 2 cores
rsm.0 <- GPCMlasso(form.0, tenseness_small, model = "RSM",
control= ctrl_GPCMlasso(cores=2))
rsm.0
## Not run:
## formula for model with covariates (and DIF detection)
form <- as.formula(paste("cbind(",paste(colnames(tenseness_small)[1:5],collapse=","),")~."))
######
## fit GPCM model with 10 different tuning parameters
gpcm <- GPCMlasso(form, tenseness_small, model = "GPCM",
control = ctrl_GPCMlasso(l.lambda = 10))
gpcm
plot(gpcm)
pred.gpcm <- predict(gpcm)
trait.gpcm <- trait.posterior(gpcm)
######
## fit RSM, detect differential step functioning (DSF)
rsm.DSF <- GPCMlasso(form, tenseness_small, model = "RSM", DSF = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rsm.DSF
plot(rsm.DSF)
## create binary data set
tenseness_small_binary <- tenseness_small
tenseness_small_binary[,1:5][tenseness_small[,1:5]>1] <- 2
######
## fit and cross-validate Rasch model
set.seed(1860)
rm.cv <- GPCMlasso(form, tenseness_small_binary, model = "RM", cv = TRUE,
control = ctrl_GPCMlasso(l.lambda = 10))
rm.cv
plot(rm.cv)
## End(Not run)