kernel {GPBayes} | R Documentation |
A wraper to build different kinds of correlation matrices with distance as arguments
Description
This function wraps existing built-in routines to construct a covariance
matrix based on data type, covariance type, and distance type with distances as inputs. The constructed
covariance matrix can be directly used for GaSP fitting and and prediction for spatial
data, spatio-temporal data, and computer experiments.
Usage
kernel(d, range, tail, nu, covmodel)
Arguments
d |
a matrix or a list of distances
|
range |
a vector of range parameters, which could be a scalar.
|
tail |
a vector of tail decay parameters, which could be a scalar.
|
nu |
a vector of smoothness parameters, which could be a scalar.
|
covmodel |
a list of two strings: family, form, where family indicates the family of covariance functions
including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. form indicates the
specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form.
- family
-
- CH
The Confluent Hypergeometric correlation function is given by
C(h) = \frac{\Gamma(\nu+\alpha)}{\Gamma(\nu)}
\mathcal{U}\left(\alpha, 1-\nu, \left(\frac{h}{\beta}\right)^2\right),
where \alpha is the tail decay parameter. \beta is the range parameter.
\nu is the smoothness parameter. \mathcal{U}(\cdot) is the confluent hypergeometric
function of the second kind. For details about this covariance,
see Ma and Bhadra (2023; doi:10.1080/01621459.2022.2027775).
- cauchy
The generalized Cauchy covariance is given by
C(h) = \left\{ 1 + \left( \frac{h}{\phi} \right)^{\nu}
\right\}^{-\alpha/\nu},
where \phi is the range parameter. \alpha is the tail decay parameter.
\nu is the smoothness parameter with default value at 2.
- matern
The Matérn correlation function is given by
C(h)=\frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{h}{\phi} \right)^{\nu}
\mathcal{K}_{\nu}\left( \frac{h}{\phi} \right),
where \phi is the range parameter. \nu is the smoothness parameter.
\mathcal{K}_{\nu}(\cdot) is the modified Bessel function of the second kind of order \nu .
- exp
This is the Matérn correlation with \nu=0.5 . This covariance should be specified as matern with smoothness parameter \nu=0.5 .
- matern_3_2
This is the Matérn correlation with \nu=1.5 .
This covariance should be specified as matern with smoothness parameter \nu=1.5 .
- matern_5_2
This is the Matérn correlation with \nu=2.5 .
This covariance should be specified as matern with smoothness parameter \nu=2.5 .
- powexp
The powered-exponential correlation function is given by
C(h)=\exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},
where \phi is the range parameter. \nu is the smoothness parameter.
- gauss
The Gaussian correlation function is given by
C(h)=\exp\left(-\frac{h^2}{\phi^2}\right),
where \phi is the range parameter.
- form
-
- isotropic
This indicates the isotropic form of covariance functions. That is,
C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol \theta),
where \| \mathbf{h}\| denotes the
Euclidean distance or the great circle distance for data on sphere. C^0(\cdot) denotes
any isotropic covariance family specified in family.
- tensor
This indicates the tensor product of correlation functions. That is,
C(\mathbf{h}) = \prod_{i=1}^d C^0(|h_i|; \boldsymbol \theta_i),
where d is the dimension of input space. h_i is the distance along the i th input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments.
- ARD
This indicates the automatic relevance determination form. That is,
C(\mathbf{h}) = C^0\left(\sqrt{\sum_{i=1}^d\frac{h_i^2}{\phi^2_i}}; \boldsymbol \theta \right),
where \phi_i denotes the range parameter along the i th input dimension.
|
Value
a correlation matrix
Author(s)
Pulong Ma mpulong@gmail.com
See Also
CH
, matern
, ikernel
, GPBayes-package, GaSP
Examples
input = seq(0,1,length=10)
d = distance(input,input,type="isotropic",dtype="Euclidean")
cormat = kernel(d,range=0.5,tail=0.2,nu=2.5,
covmodel=list(family="CH",form="isotropic"))
[Package
GPBayes version 0.1.0-6
Index]