gp.optim {GPBayes} | R Documentation |
A wraper to fit a Gaussian stochastic process model with optimization methods
Description
This function is a wraper to estimate parameters in the GaSP model with different
choices of estimation methods using numerical optimization methods.
Usage
gp.optim(obj, method = "MMLE", opt = NULL, bound = NULL)
Arguments
obj |
an S4 object gp
|
method |
a string indicating the parameter estimation method:
- MPLE
This indicates that the maximum profile likelihood estimation
(MPLE) is used.
- MMLE
This indicates that the maximum marginal likelihood estimation
(MMLE) is used.
- MAP
This indicates that the marginal/integrated posterior is maximized.
|
opt |
a list of arguments to setup the optim routine. Current implementation uses three arguments:
- method
The optimization method: Nelder-Mead or L-BFGS-B .
- lower
The lower bound for parameters.
- upper
The upper bound for parameters.
|
bound |
Default value is NULL . Otherwise, it should be a list
containing the following elements depending on the covariance class:
- nugget
a list of bounds for the nugget parameter.
It is a list containing lower bound lb and
upper bound ub with default value
list(lb=0, ub=Inf) .
- range
a list of bounds for the range parameter. Tt has default value
range=list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance, the Matérn covariance, exponential covariance, Gaussian
covariance, powered-exponential covariance, and Cauchy covariance. The log of range parameterization
is used: \log(\phi) .
- tail
a list of bounds for the tail decay parameter. It has default value
list(lb=0, ub=Inf)
for the Confluent Hypergeometric covariance and the Cauchy covariance.
- nu
a list of bounds for the smoothness parameter. It has default value
list(lb=0, ub=Inf) for the Confluent Hypergeometric covariance and the Matérn covariance.
when the powered-exponential or Cauchy class
is used, it has default value nu=list(lb=0, ub=2) .
This can be achived by specifying the lower bound in opt .
|
Value
a list of updated gp
object obj and
fitted information fit
Author(s)
Pulong Ma mpulong@gmail.com
See Also
GPBayes-package, GaSP
, gp, gp.mcmc
Examples
code = function(x){
y = (sin(pi*x/5) + 0.2*cos(4*pi*x/5))*(x<=9.6) + (x/10-1)*(x>9.6)
return(y)
}
n=100
input = seq(0, 20, length=n)
XX = seq(0, 20, length=99)
Ztrue = code(input)
set.seed(1234)
output = Ztrue + rnorm(length(Ztrue), sd=0.1)
obj = gp(formula=~1, output, input,
param=list(range=4, nugget=0.1,nu=2.5),
smooth.est=FALSE,
cov.model=list(family="matern", form="isotropic"))
fit.optim = gp.optim(obj, method="MPLE")
[Package
GPBayes version 0.1.0-6
Index]