| gp-class {GPBayes} | R Documentation |
The gp class
Description
This is an S4 class definition for gp in the GaSP
package.
Slots
formulaan object of
formulaclass that specifies regressors; seeformulafor details.outputa numerical vector including observations or outputs in a GaSP
inputa matrix including inputs in a GaSP
parama list including values for regression parameters, correlation parameters, and nugget variance parameter. The specification of param should depend on the covariance model.
The regression parameters are denoted by coeff. Default value is
\mathbf{0}.The marginal variance or partial sill is denoted by sig2. Default value is 1.
The nugget variance parameter is denoted by nugget for all covariance models. Default value is 0.
For the Confluent Hypergeometric class, range is used to denote the range parameter
\beta. tail is used to denote the tail decay parameter\alpha. nu is used to denote the smoothness parameter\nu.For the generalized Cauchy class, range is used to denote the range parameter
\phi. tail is used to denote the tail decay parameter\alpha. nu is used to denote the smoothness parameter\nu.For the Matérn class, range is used to denote the range parameter
\phi. nu is used to denote the smoothness parameter\nu. When\nu=0.5, the Matérn class corresponds to the exponential covariance.For the powered-exponential class, range is used to denote the range parameter
\phi. nu is used to denote the smoothness parameter. When\nu=2, the powered-exponential class corresponds to the Gaussian covariance.
cov.modela list of two strings: family, form, where family indicates the family of covariance functions including the Confluent Hypergeometric class, the Matérn class, the Cauchy class, the powered-exponential class. form indicates the specific form of covariance structures including the isotropic form, tensor form, automatic relevance determination form.
- family
-
- CH
The Confluent Hypergeometric correlation function is given by
C(h) = \frac{\Gamma(\nu+\alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1-\nu, \left(\frac{h}{\beta}\right)^2\right),where
\alphais the tail decay parameter.\betais the range parameter.\nuis the smoothness parameter.\mathcal{U}(\cdot)is the confluent hypergeometric function of the second kind. Note that this parameterization of the CH covariance is different from the one in Ma and Bhadra (2023). For details about this covariance, see Ma and Bhadra (2023; doi:10.1080/01621459.2022.2027775).- cauchy
The generalized Cauchy covariance is given by
C(h) = \left\{ 1 + \left( \frac{h}{\phi} \right)^{\nu} \right\}^{-\alpha/\nu},where
\phiis the range parameter.\alphais the tail decay parameter.\nuis the smoothness parameter with default value at 2.- matern
The Matérn correlation function is given by
C(h)=\frac{2^{1-\nu}}{\Gamma(\nu)} \left( \frac{h}{\phi} \right)^{\nu} \mathcal{K}_{\nu}\left( \frac{h}{\phi} \right),where
\phiis the range parameter.\nuis the smoothness parameter.\mathcal{K}_{\nu}(\cdot)is the modified Bessel function of the second kind of order\nu.- exp
The exponential correlation function is given by
C(h)=\exp(-h/\phi),where
\phiis the range parameter. This is the Matérn correlation with\nu=0.5.- matern_3_2
The Matérn correlation with
\nu=1.5.- matern_5_2
The Matérn correlation with
\nu=2.5.- powexp
The powered-exponential correlation function is given by
C(h)=\exp\left\{-\left(\frac{h}{\phi}\right)^{\nu}\right\},where
\phiis the range parameter.\nuis the smoothness parameter.- gauss
The Gaussian correlation function is given by
C(h)=\exp\left(-\frac{h^2}{\phi^2}\right),where
\phiis the range parameter.
- form
-
- isotropic
This indicates the isotropic form of covariance functions. That is,
C(\mathbf{h}) = C^0(\|\mathbf{h}\|; \boldsymbol \theta),where
\| \mathbf{h}\|denotes the Euclidean distance or the great circle distance for data on sphere.C^0(\cdot)denotes any isotropic covariance family specified in family.- tensor
This indicates the tensor product of correlation functions. That is,
C(\mathbf{h}) = \prod_{i=1}^d C^0(|h_i|; \boldsymbol \theta_i),where
dis the dimension of input space.h_iis the distance along theith input dimension. This type of covariance structure has been often used in Gaussian process emulation for computer experiments.- ARD
This indicates the automatic relevance determination form. That is,
C(\mathbf{h}) = C^0\left(\sqrt{\sum_{i=1}^d\frac{h_i^2}{\phi^2_i}}; \boldsymbol \theta \right),where
\phi_idenotes the range parameter along theith input dimension.
smooth.esta logical value. If it is
TRUE, the smoothness parameter will be estimated; otherwise the smoothness is not estimated.dtypea string indicating the type of distance:
- Euclidean
Euclidean distance is used. This is the default choice.
- GCD
Great circle distance is used for data on sphere.
loglika numerical value containing the log-likelihood with current
gpobject.mcmca list containing MCMC samples if available.
priora list containing tuning parameters in prior distribution. This is used only if a Bayes estimation method with informative priors is used.
proposala list containing tuning parameters in proposal distribution. This is used only if a Bayes estimation method is used.
infoa list containing the maximum distance in the input space. It should be a vector if isotropic covariance is used, otherwise it is vector of maximum distances along each input dimension
Author(s)
Pulong Ma mpulong@gmail.com