cor.to.par {GPBayes} | R Documentation |
Find the correlation parameter given effective range
Description
This function finds the correlation parameter given effective range
Usage
cor.to.par(
d,
param,
family = "CH",
cor.target = 0.05,
lower = NULL,
upper = NULL,
tol = .Machine$double.eps
)
Arguments
d |
a numerical value containing the effective range
|
param |
a list containing correlation parameters. The specification of
param should depend on the covariance model. If the parameter value is
NULL , this function will find its value given the effective range via
root-finding function uniroot .
For the Confluent Hypergeometric class, range is used to denote the range parameter \beta .
tail is used to denote the tail decay parameter \alpha . nu is used to denote the
smoothness parameter \nu .
For the generalized Cauchy class, range is used to denote the range parameter \phi .
tail is used to denote the tail decay parameter \alpha . nu is used to denote the
smoothness parameter \nu .
For the Matérn class, range is used to denote the range parameter \phi .
nu is used to denote the smoothness parameter \nu . When \nu=0.5 , the
Matérn class corresponds to the exponential covariance.
For the powered-exponential class, range is used to denote the range parameter \phi .
nu is used to denote the smoothness parameter. When \nu=2 , the powered-exponential class
corresponds to the Gaussian covariance.
|
family |
a string indicating the type of covariance structure.
The following correlation functions are implemented:
- CH
The Confluent Hypergeometric correlation function is given by
C(h) = \frac{\Gamma(\nu+\alpha)}{\Gamma(\nu)}
\mathcal{U}\left(\alpha, 1-\nu, \left(\frac{h}{\beta}\right)^2\right),
where \alpha is the tail decay parameter. \beta is the range parameter.
\nu is the smoothness parameter. \mathcal{U}(\cdot) is the confluent hypergeometric
function of the second kind. Note that this parameterization of the CH covariance is different from the one in Ma and Bhadra (2023). For details about this covariance,
see Ma and Bhadra (2023; doi:10.1080/01621459.2022.2027775).
- cauchy
The generalized Cauchy covariance is given by
C(h) = \left\{ 1 + \left( \frac{h}{\phi} \right)^{\nu}
\right\}^{-\alpha/\nu},
where \phi is the range parameter. \alpha is the tail decay parameter.
\nu is the smoothness parameter.
- matern
The Matérn correlation function is given by
C(h)=\frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{h}{\phi} \right)^{\nu}
\mathcal{K}_{\nu}\left( \frac{h}{\phi} \right),
where \phi is the range parameter. \nu is the smoothness parameter.
\mathcal{K}_{\nu}(\cdot) is the modified Bessel function of the second kind of order \nu .
- exp
The exponential correlation function is given by
C(h)=\exp(-h/\phi),
where \phi is the range parameter. This is the Matérn correlation with \nu=0.5 .
- matern_3_2
The Matérn correlation with \nu=1.5 .
- matern_5_2
The Matérn correlation with \nu=2.5 .
|
cor.target |
a numerical value. The default value is 0.05, which
means that correlation parameters are searched such that the correlation
is approximately 0.05.
|
lower |
a numerical value. This sets the lower bound to find the
correlation parameter via the R function uniroot .
|
upper |
a numerical value. This sets the upper bound to find the
correlation parameter via the R function uniroot .
|
tol |
a numerical value. This sets the precision of the solution with default value
specified as the machine precision .Machine$double.eps in R .
|
Value
a numerical value of correlation parameters
Author(s)
Pulong Ma mpulong@gmail.com
See Also
GPBayes-package, GaSP
, kernel
, ikernel
Examples
range = cor.to.par(1,param=list(tail=0.5,nu=2.5), family="CH")
tail = cor.to.par(1,param=list(range=0.5,nu=2.5), family="CH")
range = cor.to.par(1,param=list(nu=2.5),family="matern")
[Package
GPBayes version 0.1.0-6
Index]