CH {GPBayes}R Documentation

The Confluent Hypergeometric correlation function proposed by Ma and Bhadra (2023)

Description

This function computes the Confluent Hypergeometric correlation function given a distance matrix. The Confluent Hypergeometric correlation function is given by

C(h) = \frac{\Gamma(\nu+\alpha)}{\Gamma(\nu)} \mathcal{U}\left(\alpha, 1-\nu, \biggr(\frac{h}{\beta}\biggr)^2 \right),

where \alpha is the tail decay parameter. \beta is the range parameter. \nu is the smoothness parameter. \mathcal{U}(\cdot) is the confluent hypergeometric function of the second kind. Note that this parameterization of the CH covariance is different from the one in Ma and Bhadra (2023). For details about this covariance, see Ma and Bhadra (2023; doi:10.1080/01621459.2022.2027775).

Usage

CH(d, range, tail, nu)

Arguments

d

a matrix of distances

range

a numerical value containing the range parameter

tail

a numerical value containing the tail decay parameter

nu

a numerical value containing the smoothness parameter

Value

a numerical matrix

Author(s)

Pulong Ma mpulong@gmail.com

See Also

GPBayes-package, GaSP, gp, matern, kernel, ikernel


[Package GPBayes version 0.1.0-6 Index]