predict.GMDH {GMDH2} | R Documentation |
Predicting Using GMDH Algorithm for Binary Classification
Description
This function predicts values based upon a model trained by GMDH
.
Usage
## S3 method for class 'GMDH'
predict(object, x, type = "class", ...)
Arguments
object |
an object of class |
x |
a matrix containing the new input data. |
type |
a character string to return predicted output. If type = "class", the function returns the predicted classes. If type = "probability", it returns the predicted probabilities. Default is set to "class". |
... |
currently not used. |
Value
A vector of predicted values of corresponding classes depending on type specified.
Author(s)
Osman Dag, Erdem Karabulut, Reha Alpar
See Also
Examples
library(GMDH2)
library(mlbench)
data(BreastCancer)
data <- BreastCancer
# to obtain complete observations
completeObs <- complete.cases(data)
data <- data[completeObs,]
x <- data.matrix(data[,2:10])
y <- data[,11]
seed <- 12345
set.seed(seed)
nobs <- length(y)
# to split train, validation and test sets
indices <- sample(1:nobs)
ntrain <- round(nobs*0.6,0)
nvalid <- round(nobs*0.2,0)
ntest <- nobs-(ntrain+nvalid)
train.indices <- sort(indices[1:ntrain])
valid.indices <- sort(indices[(ntrain+1):(ntrain+nvalid)])
test.indices <- sort(indices[(ntrain+nvalid+1):nobs])
x.train <- x[train.indices,]
y.train <- y[train.indices]
x.valid <- x[valid.indices,]
y.valid <- y[valid.indices]
x.test <- x[test.indices,]
y.test <- y[test.indices]
set.seed(seed)
# to construct model via GMDH algorithm
model <- GMDH(x.train, y.train, x.valid, y.valid)
# to obtain predicted classes for test set
predict(model, x.test, type = "class")
# to obtain predicted probabilities for test set
predict(model, x.test, type = "probability")
[Package GMDH2 version 1.8 Index]