primary {GLMpack}R Documentation

Data on the 2016 Republican Presidentical Primaries

Description

Data for the primary example used in chapters 4 and 5

Usage

data(primary)

Format

A data frame with 706 rows and 9 variables:

PRIMVOTE

Vote intention

AGE

Age

GENDER

Gender

EDUCATION

Education

REGION

Region of the country in which the respondent lives

RELIGIOSITY

Religiosity

IDEOLOGY

Ideology

RWA

Right Wing Authoritarianism scale

TRUMPWIN

Perceptions of whether Trump could win

...

Examples

opar = par(mfrow=c(1,1), mar=c(5.1,4.1,4.1,2.1), oma=c(0,0,0,0))
data(primary)
attach(primary)
library(nnet)
library(pBrackets)
library(effects)

## Model
primary.out <- multinom(PRIMVOTE ~ AGE + GENDER + EDUCATION + REGION +
                        RELIGIOSITY + IDEOLOGY + RWA + TRUMPWIN, data=primary)
summ.primary.out <- glm.summary.multinom(primary.out)

## Figure 4.2
par(mfrow=c(3,3), mar=c(2.5,2,2,1))
# Plot 1: Electoral preference
countsPV0 <- barplot(table(primary$PRIMVOTE), main="Electoral Preference",
        xlab="Candidates", mgp=c(1.1, 0.2, 1))
text(countsPV0[,1], rep(10,4), as.numeric(table(primary$PRIMVOTE)), cex=1.5)
# Plot 2: Age
countsAGE <- barplot(table(primary$AGE), main="Age",
                     xlab="Age categories", mgp=c(1.1, 0.2, 0))
text(countsAGE[,1], rep(10,4), as.numeric(table(primary$AGE)), cex=1.5)
# Plot 3: Gender
countsGENDER <- barplot(table(primary$GENDER), main="Gender",
                     xlab="Gender categories", mgp=c(1.1, 0.2, 0), ylim=c(0,500))
text(countsGENDER[,1], rep(25,2), as.numeric(table(primary$GENDER)), cex=1.5)
# Plot 4: Education
countsEDUC <- barplot(table(primary$EDUCATION), main="Education",
                        xlab="Schooling level", mgp=c(1.1, 0.2, 0))
text(countsEDUC[,1], rep(10,4), as.numeric(table(primary$EDUCATION)), cex=1.5)
# Plot 5: Region
countsREG <- barplot(table(primary$REGION), main="Region",
                      xlab="Region", mgp=c(1.1, 0.2, 0))
text(countsREG[,1], rep(10,4), as.numeric(table(primary$REGION)), cex=1.5)
hist(primary$RELIGIOSITY,xlab="Religiosity Score",ylab="",
     xlim=c(-1.5,2), ylim=c(0, 225), main="Religiosity",
     col = "gray70", mgp=c(1.1, 0.2, 0))
# Plot 7: Ideology
hist(primary$IDEOLOGY,xlab="Ideology Score",ylab="",
     xlim=c(-2,1.5), ylim=c(0, 150), main="Ideology",
     col = "gray70", mgp=c(1.1, 0.2, 0))
# Plot 8: Right Wing Authoritarianism
hist(primary$RWA,xlab="Right Wing Authoritarianism Score",ylab="",
     xlim=c(-2.5,2), ylim=c(0, 200), main="Authoritarianism",
     col = "gray70", mgp=c(1.1, 0.2, 0))
colnames(primary)
# Plot 9: Could Trump Win?
countsWIN <- barplot(table(primary$TRUMPWIN), main="Trump's winnability",
                     xlab="Perceptions of whether Trump could win",
                     mgp=c(1.1, 0.2, 0), ylim=c(0,550))
text(countsWIN[,1], rep(30,3), as.numeric(table(primary$TRUMPWIN)), cex=1.5)
par(opar)

## Figure 5.3
layout(matrix(1:2, ncol = 1), heights = c(0.9,0.1))
par(mar=c(3,4,0,1),oma=c(1,1,1,1))
plot(summ.primary.out[[1]][,1], type = "n", xaxt="n", yaxt="n",
     xlim=c(-10,3), ylim=c(0,60), ylab="", xlab="")
abline(v=-5, h=c(12,16,28,40,44,48,52), lwd=2)
abline(h=c(4,8,20,24,32,36,56), lty=3, col="gray60")
text(rep(-7.5,15), seq(2,58,4),
     labels = c('30-44', '45-59', '60+',
                'Male',
                'High School','Some College','Bachelor\'s degree or higher',
                'Northeast', 'South', 'West',
                'Religiosity',
                'Ideology',
                'Authoritarianism',
                'Yes', 'Don\'t know'))
segments(summ.primary.out[[1]][-1,3], seq(1,57,4), summ.primary.out[[1]][-1,4],
         seq(1,57,4), col="gray30", lwd=2)
points(summ.primary.out[[1]][-1,1], seq(1,57,4), pch=21, cex=1.4, bg="black")
text(summ.primary.out[[1]][-1,1], seq(1,57,4), labels = "C", cex = 0.7, col="white")
segments(summ.primary.out[[2]][-1,3], seq(3,59,4), summ.primary.out[[2]][-1,4],
         seq(3,59,4), col="gray30", lwd=2)
points(summ.primary.out[[2]][-1,1], seq(3,59,4), pch=21, cex=1.4, bg="white")
text(summ.primary.out[[2]][-1,1], seq(3,59,4), labels = "K", cex = 0.7, col="black")
abline(v=0, lty=2)
axis(1, tck=0.01, at = seq(-5,5,0.5),cex.axis=0.9, mgp=c(0.3, 0.3, 0), lty=1, lwd=0,
     lwd.ticks = 1)
axis(2, tck=0.02, at = c(6,14,22,34,42,46,50,56), labels=c('AGE', 'GENDER',
     'EDUCATION', 'REGION', 'RELIGIOSITY', 'IDEOLOGY', 'RWA', 'TRUMPWIN'),
     cex.axis=0.9, mgp=c(0.3, 0.3, 0), lty=1, lwd=0, lwd.ticks = 0, las=1)
title(xlab = "Coefficient",
      line = 1.7, cex.lab=1.3)
par(mar=c(0,4,0,0))
plot(0,0, type="n", axes = FALSE, xaxt="n", yaxt="n", xlab="", ylab = "")
legend("center", c("Cruz", "Kasich"), ncol=2, pch=c(21,21), pt.bg=c("black", "white"),
       pt.cex=rep(1.4,2), bty = "n")
par(opar)

## Figure 5.4
mygray = rgb(153, 153, 153, alpha = 200, maxColorValue = 255)
mygray2 = rgb(179, 179, 179, alpha = 150, maxColorValue = 255)
mygray3 = rgb(204, 204, 204, alpha = 150, maxColorValue = 255)
preds_win <- Effect("TRUMPWIN", primary.out)
preds_ideol <- Effect("IDEOLOGY", primary.out, xlevels=list(IDEOLOGY=100))
par(mfrow=c(1,2), mar=c(4,3,3,0),oma=c(1,1,1,1))
plot(1:3, preds_win$prob[,1], type="n",xlab="",ylab="",  yaxt="n", xaxt="n",
     xlim=c(0,4), ylim=c(0, 0.7))
segments(rep(1:3, 3), preds_win$lower.prob[,1:3], rep(1:3, 3), preds_win$upper.prob[,1:3],
         col=rep(c('black', 'black', 'gray60'), each=3), lty = rep(c(1,2,1), each=3))
points(rep(1:3,3), preds_win$prob[,1:3], pch=21, cex = 2,
       bg=rep(c("black", "white", "gray60"),each=3), col=rep(c("black", "black", "gray60"),each=3))
text(rep(1:3,3), preds_win$prob[,1:3], labels=rep(c("T", "C", "K"), each=3), cex = 0.8,
     bg=rep(c("black", "white", "gray60"),each=3), col=rep(c("white", "black", "black"),each=3))
axis(1, at=1:3, labels = c("No", "Yes", "DK"), tck=0.03, cex.axis=0.9, mgp=c(0.3, 0.3, 0),
     lty=1, lwd=0, lwd.ticks = 1)
axis(2, tck=0.03, cex.axis=0.9, mgp=c(0.3, 0.3, 0), lty=1, lwd=0, lwd.ticks = 1, las=2)
title(xlab = 'Perceptions of whether Trump could win the election',
      ylab="Probability of voting",
      line = 1.7, cex.lab=1)
title(line = 1, main="Winnability", font.main=3)
plot(preds_ideol$x$IDEOLOGY, preds_ideol$prob[,1], type="n",xlab="",ylab="",  yaxt="n", xaxt="n",
     xlim=c(-2,1.5), ylim=c(0, 0.7))
polygon(c(preds_ideol$x$IDEOLOGY, rev(preds_ideol$x$IDEOLOGY)),
        c(preds_ideol$lower.prob[,2], rev(preds_ideol$upper.prob[,2])), border = NA, col=mygray2)
polygon(c(preds_ideol$x$IDEOLOGY, rev(preds_ideol$x$IDEOLOGY)),
        c(preds_ideol$lower.prob[,1], rev(preds_ideol$upper.prob[,1])), border = NA, col=mygray)
polygon(c(preds_ideol$x$IDEOLOGY, rev(preds_ideol$x$IDEOLOGY)),
        c(preds_ideol$lower.prob[,3], rev(preds_ideol$upper.prob[,3])), border = NA, col=mygray3)
lines(preds_ideol$x$IDEOLOGY, preds_ideol$prob[,1], col="gray20", lwd=2)
lines(preds_ideol$x$IDEOLOGY, preds_ideol$prob[,2], col="gray40", lwd=2, lty=2)
lines(preds_ideol$x$IDEOLOGY, preds_ideol$prob[,3], col="black", lwd=2)
text(rep(1,3), c(min(preds_ideol$prob[,1]), min(preds_ideol$prob[,2]),
     max(preds_ideol$prob[,3]))+.05, labels = c('Trump', 'Cruz', 'Kasich'))
axis(1, tck=0.03, cex.axis=0.9, mgp=c(0.3, 0.3, 0), lty=1, lwd=0, lwd.ticks = 1)
axis(2, tck=0.03, cex.axis=0.9, mgp=c(0.3, 0.3, 0), lty=1, lwd=0, lwd.ticks = 1, las=2)
title(xlab = 'Ideology scores',
      ylab="Probability of voting",
      line = 1.7, cex.lab=1)
title(line = 1, main="Ideology", font.main=3)
par(opar)

[Package GLMpack version 0.1.0 Index]